
Atredis Partners Bene Diagnoscitur, Bene Curatur Confidential For Intended Recipient Only

Prepared for Salesforce.com, Inc.

August 3, 2021 (version 1.1)

Atredis Partners www.atredis.com

Salesforce
Kubernetes Control Plane
Vulnerability Assessment
Security Assessment Report

Project Team:

Technical Testing Tom Steele and Joshua Dow

Technical Editing Nathan Keltner and Lacey

Kasten

Project Management Sara Bettes

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 2

Table of Contents

Engagement Overview ... 3
Assessment Components and Objectives ... 3

Executive Summary ... 4
Key Conclusions .. 4

Findings Summary ... 5

Environment Setup .. 6
Attack Surface Review ... 7

Node to Node ... 8

kube-proxy .. 10

Node to API .. 13

kube-proxy .. 23

Threat Model Overview .. 26
Threat ID 1 .. 27

Threat ID 2 .. 28

Threat ID 3 .. 29

Threat ID 4 .. 30

Threat ID 5 .. 31

Threat ID 6 .. 32

Threat ID 7 .. 33

Threat ID 8 .. 34

Threat ID 9 .. 35

Threat ID 10... 36

Threat ID 11... 37

Threat ID 12... 38

Threat ID 13... 39

Threat ID 14... 40

Threat ID 15... 41

Threat ID 16... 42

Threat ID 17... 43

Threat ID 18... 44

Threat ID 19... 45

Findings and Recommendations .. 46
Findings Summary ... 46

Findings Detail .. 46

Kubeadm: Kubelet Configured with Webhook Authentication 47

Kube-apiserver: Insecure TLS Configuration ... 51

Kube-apiserver: Bootstrap Tokens Allowed without Expiration 53

Kube-apiserver: NodeRestriction Does Not Limit Events API 55

Appendix I: Assessment Methodology .. 57
Appendix II: Engagement Team Biographies .. 60
Appendix III: About Atredis Partners ... 65

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 3

Engagement Overview

Assessment Components and Objectives

Salesforce.com, Inc. (“Salesforce”) recently engaged Atredis Partners (“Atredis”) to perform

a Vulnerability Assessment of the Kubernetes Control Plane.

Testing was performed from April 19 through May 14, 2021 by Tom Steele and Joshua Dow

of the Atredis Partners team, with Sara Bettes providing project management and delivery

oversight. For Atredis Partners’ assessment methodology, please see Appendix I of this

document, and for team biographies, please see Appendix II. Specific testing components and

testing tasks are included below.

COMPONENT ENGAGEMENT TASKS

Salesforce Kubernetes Control Plane Vulnerability Assessment

Assessment Targets • Kubernetes Control Plane

• Latest Kuberentes release

• Standard deployment via kubeadm

• kube-apiserver

• kubelet

• kube-proxy

• etcd

• kube-scheduler

• kube-controller-manager

• TLS and token-based authentication schemes

• RBAC authorization

• Multi-tenant simulation environment

• Simulated node compromise

• CoreDNS configuration

Assessment Tasks • Source-Assisted Vulnerability Assessment and Penetration

Testing

• Control Plane Threat Modeling

• DFD and Attack Surface Mapping

Reporting and Analysis

Analysis and Deliverables • Status Reporting and Realtime Communication

• Comprehensive Engagement Deliverables

• DFD

• Threat Model

• Final deliverable with executive summary, overview of
findings, and low-level finding details

• Engagement Outbrief

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 4

Executive Summary

Atredis Partners conducted an assessment of the Kubernetes control plane with a focus on

multi-tenancy. Multi-tenancy within the same enterprise, such as development, test,

production teams sharing the same cluster has been discussed extensively in the Kubernetes

space. Software as a Service (SaaS) solutions, where applications are deployed for different

tenants within the same cluster has been discussed frequently as well. The conclusion of these

discussions is that multi-tenancy is satisfactory solution depending on the risk appetite of the

organization.

Multi-tenancy as it concerned for this project, which is sometimes referred to as Kubernetes

as a Service, where each tenant shares the same control plane but is not part of the same

organization, has received some discussion but has not been extensively researched.

The Kubernetes Multi-Tenancy Working Group recently published an update for common

tenancy models along with emerging products that are designed to resolve potential issues.

The three models discussed included:

• Namespace as a Service – tenant share a cluster and nodes and workloads are only

restricted by namespace

• Clusters as a Service – each tenant is provisioned their own cluster

• Control planes as a Service – each tenant is provided a control plane but share worker

nodes

The model proposed for testing does not fit any of these, as the proposed solution shares a

control plane but isolates the worker nodes. This can be done using node taints. The caveat

with taints is that a tenant cannot have direct access to the control plane. This fits the

proposed solution as an intermediary service would communicate with the control plane on

behalf of the tenant.

Atredis Partners created a threat model operating under the assumption that an attacker has

compromised a node and tenants do not have direct access to the control plane. Threat

scenarios drove the vulnerability assessment testing process to prove mitigations, examine

impact, and document residual risk.

Key Conclusions

No significant findings were identified in the Kubernetes control plane or data plane

components. Controls that would be critical to the security of cluster and multi-tenancy were

tested extensively using a combination of code review and dynamic testing.

Several low severity findings were identified. None of these findings would impede a solution

from moving forward. Most of these findings can be resolved by configuration changes and

designing systems and processes to avoid their potential impact.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 5

Despite these positive results, the radius of a security event that results in complete or partial

compromise of the kube-apiserver or etc. may not be an acceptable risk for the Salesforce

environment. Once compromised, post-exploitation, data exfiltration, and persistence across

the cluster is straight-forward and may be difficult to detect. Investing time and resources

into enhancing Clusters as a Service initiatives should be investigated as an alternative to the

proposed solution.

Future work involves reviews of Container Network Interface (CNI) implementations and the

story of services in the proposed solutions. Of particular interest will be confused deputy

attacks that could allow a tenant to expose the services of another tenant. The use of

namespaces and network policies adequately prevented these scenarios in the test

environment, but the use of more enterprise grade solutions involving external load balancers

and more complex networking is an area for additional research.

Findings Summary

In performing testing for this assessment, Atredis Partners identified (4) low severity findings.

No medium, high, or critical severity findings were identified. As stated earlier, none of these

issues constitute a potential for direct compromise.

Atredis defines vulnerability severity ranking as follows:

• Critical: These vulnerabilities expose systems and applications to immediate threat of

compromise by a dedicated or opportunistic attacker.

• High: These vulnerabilities entail greater effort for attackers to exploit and may result

in successful network compromise within a relatively short time.

• Medium: These vulnerabilities may not lead to network compromise but could be

leveraged by attackers to attack other systems or applications components or be

chained together with multiple medium findings to constitute a successful compromise.

• Low: These vulnerabilities are largely concerned with improper disclosure of

information and should be resolved. They may provide attackers with important

information that could lead to additional attack vectors or lower the level of effort

necessary to exploit a system.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 6

Environment Setup

Atredis Partners created a test environment using kubeadm defaults consisting of the

following:

• Ubuntu Linux Operating System

• 1 control plane node

• 2 data plane nodes

• containerd container runtime

• Kubernetes version 1.21.0

• CoreDNS

• Weave CNI

Changes to configurations were made when required in order to test possible deficient

configurations or prove security controls that were the result of improvements over the default

configuration.

A combination of namespaces and node taints were used to separate hypothetical tenants in

the cluster. Each tenant was provided a single node. Taints were created using the following:

$ kubectl taint nodes nodea tentant=clienta:NoSchedule

When creating a Pod for a tenant, tolerations were used to ensure workloads were scheduled

on the appropriate node:

apiVersion: v1
kind: Pod
metadata:
 name: echo
spec:
 containers:
 - name: echo
 image: k8s.gcr.io/echoserver:1.4
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - name: secretvolume
 mountPath: "/etc/namespace-name"
 readOnly: true
 volumes:
 - name: secretvolume
 secret:
 secretName: test-secret

 tolerations:
 - key: "tenant"
 operator: "Equal"
 value: "clienta"
 effect: "NoSchedule"

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 7

Attack Surface Review

As discussed, this focus of this assessment centered on attacks from a compromised node.

An attacker with uninhibited access to a node would be able to interact and gain access to

authentication material for the following components:

• kubelet

• kube-proxy

• CNI plugin(s)

• container runtime (i.e., Docker)

Container Network Interface (CNI) plugin(s) and the container runtime were not in scope for

this assessment.

When discussing the attack surface of these components this assessment will separate the

data flows into two major directions, Node to Node and Node to API. The Data Flow Diagram

(DFD) below shows these potential attack paths. Note that when discussing Node-to-Node

that control plane nodes are a potential target along with data plane nodes as they may run

the same components.

Kubernetes DFD

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 8

Node to Node

kubelet

A Kubernetes node runs an agent, kubelet, which oversees managing workloads on a node.

Kubelet is a Go binary that continuously communicates with kube-apiserver and serves its

own HTTP API. The HTTP listener is typically bound to the local network interface as it needs

to be available to kube-apiserver. It is possible to restrict access to the network and use SSH

tunneling, but this is not typical. The HTTP listener uses Transport Layer Security (TLS) to

secure network communications. TLS is required, as shown below:

curl -ki http://nodeb:10250/pods
HTTP/1.0 400 Bad Request

Client sent an HTTP request to an HTTPS server.

HTTP to kubelet Request Response

The API exposes several endpoints that can be leveraged by an attacker to affect the security

of a Pod on a node. These endpoints and attacks scenarios are well known and have been

discussed in previous assessments, these include executing commands, reading and writing

files, and exposing services on a Pod.

Authentication

By default, there is no authentication configured for kubelet and anonymous access must be

explicitly disabled. To prevent attacks against kubelet, authentication must be used. There

are two methods of authentication available:

• X509 client certificates

• API bearer tokens

X509 uses a certificate to identify a user. Incoming TLS connections must have a valid client

certificate in order to be authenticated.

API bearer token authentication sends incoming bearer tokens to kube-apiserver, which in

turn uses the TokenReview API. The TokenReview API uses a webhook to call an external

service to determine the identity of a user based on the incoming token. Service account

tokens can also be used for authentication.

Allowing bearer tokens to be used for authentication exposes sibling nodes and kube-apiserver

to an attack that is not possible with X509. Due to inherent traits of a client certificate and

associated private key it is not possible for an attacker to intercept usable authentication

material from an incoming connection.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 9

For example, if an attacker was able to decrypt TLS secured HTTP requests or use a patched

kubelet server and intercept an incoming client certificate, they would not be able to use that

client certificate to authenticate to kubelet running on another node, as they do not have

access to the associated private key. The same scenario using a bearer token would allow an

attacker to authenticate to kubelet or kube-apiserver itself.

This method of authentication is configured by default by kubeadm and does present an

unnecessary risk, particularly in a multi-tenant environment. A service account should not be

authenticating directly to kubelet and kube-apiserver uses X509 for authentication as

specified in the kubelet-client-certificate and kubelet-client-key configuration flags.

Removing this form of authentication is recommended.

Authorization

An attacker who has compromised a node would have access to kubelet’s X509 certificate and

key and would be able to authenticate to a sibling kubelet as that node. For that reason,

authorization must be used in conjunction with authentication.

The following request shows nodea successfully authenticating (using an X509 certificate and

key) to nodeb and failing the requisite authorization request.

nodea:~$ sudo curl -ki https://nodeb:10250/pods --cert /var/lib/kubelet/pki/kubelet-client-
current.pem --key /var/lib/kubelet/pki/kubelet-client-current.pem
HTTP/2 403
content-type: text/plain; charset=utf-8
content-length: 79
date: Fri, 07 May 2021 19:13:19 GMT

Forbidden (user=system:node:nodea, verb=get, resource=nodes, subresource=proxy)

Node-to-Node Authentication and Authorization Request Response

Authorization by default is set to AlwaysAllow. The other authorization option available is

Webhook, which delegates authorization to kube-apiserver using a SubjectAccessReview. This

authorization setting will be used in conjunction with Node Authorizer and NodeRestriction

plugins to prevent access to a kubelet on a sibling node using kubelet’s credentials.

As these authorization mechanisms are impetrative to mitigating several threats they are

discussed in their own section. When authenticating as a user that is not a node or as a service

account, Role Based Access Control (RBAC) rules are used by delegating to the kube-apiserver

using a SubjectAccessReview.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 10

kube-proxy

The Kubernetes network proxy (kube-proxy) is a Go service that runs on each node and is

used for managing connections to Pods. This service runs as a Pod in the kube-system

namespace on each node and exposes an HTTP service. The HTTP service is used for service

readiness and metrics. No functionality was identified that could be used to compromise the

service or node from the local network. No authentication is required to access this service.

root@nodea:/# curl -ki http://nodeb:10256/healthz
HTTP/1.1 200 OK
Content-Type: application/json
X-Content-Type-Options: nosniff
Date: Fri, 21 May 2021 01:29:38 GMT
Content-Length: 149

{"lastUpdated": "2021-05-21 01:29:38.775785677 +0000 UTC m=+904.346320541","currentTime":
"2021-05-21 01:29:38.775785677 +0000 UTC m=+904.346320541"}

Node-to-Node kube-proxy Request Response

Unlike kubelet, kube-proxy uses a service account to communicate with the kube-apiserver.

The service account token would be recoverable by an attacker with root access to a node.

Accessing the service account token is documented below to aid in future work against service

account tokens from the filesystem and overall understanding of the authentication and

authorization scheme. In practice there are no reasons for an attacker to use this token, as

the permissions are very limited.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 11

This scenario begins by accessing the kubeconfig for the kube-proxy Pod, showing the

location of the service account token (local to the Pod).

cat ./var/lib/kubelet/pods/cf9830d3-bb1d-46dd-9c90-
3b1c5100e6be/volumes/kubernetes.io~configmap/kube-proxy/kubeconfig.conf
apiVersion: v1
kind: Config
clusters:
- cluster:
 certificate-authority: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 server: https://192.168.7.212:6443
 name: default
contexts:
- context:
 cluster: default
 namespace: default
 user: default
 name: default
current-context: default
users:
- name: default
 user:
 tokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token

kube-proxy kubeconfig

Next, enumerating the location from the root filesystem on the node.

cat ./var/lib/kubelet/pods/cf9830d3-bb1d-46dd-9c90-
3b1c5100e6be/volumes/kubernetes.io~projected/kube-api-access-gzccq/token
eyJhbGciOiJSUzI1NiIsImtpZCI6IjFUaE9Ra2thZ1ppS3Z1aWI1blVyWW1RWVBJVzJBMEpSUkFkbmNOMzlsNmcifQ.
eyJhdWQiOlsiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWwiXSwiZXhwIjoxNjUzMDk
0NTM5LCJpYXQiOjE2MjE1NTg1MzksImlzcyI6Imh0dHBzOi8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGVyLm
xvY2FsIiwia3ViZXJuZXRlcy5pbyI6eyJuYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsInBvZCI6eyJuYW1lIjoia3ViZ
S1wcm94eS1tdGJtbCIsInVpZCI6ImNmOTgzMGQzLWJiMWQtNDZkZC05YzkwLTNiMWM1MTAwZTZiZSJ9LCJzZXJ2aWNl
YWNjb3VudCI6eyJuYW1lIjoia3ViZS1wcm94eSIsInVpZCI6ImUxYzE4NDUxLTFiYWItNGJlMS05MDIxLTcxZTc1NjE
5YjEyMCJ9LCJ3YXJuYWZ0ZXIiOjE2MjE1NjIxNDZ9LCJuYmYiOjE2MjE1NTg1MzksInN1YiI6InN5c3RlbTpzZXJ2aW
NlYWNjb3VudDprdWJlLXN5c3RlbTprdWJlLXByb3h5In0.eI9JQ6aes7nD-g9JS-
aEYYcVvOGFakcHpZj57Mh75Sa00X84_VoG1gTArY-9pezfSdVP2-yOas1r18thFvWi4eHIdByxFFHNg7d1_8_T-
2WTmcYpBOdfG79tWiw40xIclj6CLcAc_BbE-
TXYMVYJ58rUIhiyAhcNoZUpzlRvuo_ylZ0pbLcNcDnF4ieGyIU1N7XxY5-
O9YjZgNE9OXf10YYV4DkrznWjZyVNR25bCINZtJd02LdbPHvyANoq2Lh1IPdBjeRRHJ5W-98_n-
qM4AJ3SZuugNA0EyISZIxTe0P_Md_N22JWddzQTpELBZ82McR7bQmZpOlngFDlHkffeg

kube-proxy Service Account Token File

The JSON Web Token (JWT) contains the following information.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 12

{
 "aud": [
 "https://kubernetes.default.svc.cluster.local"
],
 "exp": 1653094539,
 "iat": 1621558539,
 "iss": "https://kubernetes.default.svc.cluster.local",
 "kubernetes.io": {
 "namespace": "kube-system",
 "pod": {
 "name": "kube-proxy-mtbml",
 "uid": "cf9830d3-bb1d-46dd-9c90-3b1c5100e6be"
 },
 "serviceaccount": {
 "name": "kube-proxy",
 "uid": "e1c18451-1bab-4be1-9021-71e75619b120"
 },
 "warnafter": 1621562146
 },
 "nbf": 1621558539,
 "sub": "system:serviceaccount:kube-system:kube-proxy"
}

kube-proxy Service Account JWT

As with kubelet’s X509 certificate, this JWT can be used to authenticate to a sibling node or

kube-apiserver.

curl -ki https://192.168.7.214:10250/pods -H 'Authorization: bearer
eyJhbGciOiJSUzI1NiIsImtpZCI6IjFUaE9Ra2thZ1ppS3Z1aWI1blVyWW1RWVBJVzJBMEpSUkFkbmNOMzlsNmcifQ.
eyJhdWQiOlsiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWwiXSwiZXhwIjoxNjUzMDk
0NTM5LCJpYXQiOjE2MjE1NTg1MzksImlzcyI6Imh0dHBzOi8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGVyLm
xvY2FsIiwia3ViZXJuZXRlcy5pbyI6eyJuYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsInBvZCI6eyJuYW1lIjoia3ViZ
S1wcm94eS1tdGJtbCIsInVpZCI6ImNmOTgzMGQzLWJiMWQtNDZkZC05YzkwLTNiMWM1MTAwZTZiZSJ9LCJzZXJ2aWNl
YWNjb3VudCI6eyJuYW1lIjoia3ViZS1wcm94eSIsInVpZCI6ImUxYzE4NDUxLTFiYWItNGJlMS05MDIxLTcxZTc1NjE
5YjEyMCJ9LCJ3YXJuYWZ0ZXIiOjE2MjE1NjIxNDZ9LCJuYmYiOjE2MjE1NTg1MzksInN1YiI6InN5c3RlbTpzZXJ2aW
NlYWNjb3VudDprdWJlLXN5c3RlbTprdWJlLXByb3h5In0.eI9JQ6aes7nD-g9JS-
aEYYcVvOGFakcHpZj57Mh75Sa00X84_VoG1gTArY-9pezfSdVP2-yOas1r18thFvWi4eHIdByxFFHNg7d1_8_T-
2WTmcYpBOdfG79tWiw40xIclj6CLcAc_BbE-
TXYMVYJ58rUIhiyAhcNoZUpzlRvuo_ylZ0pbLcNcDnF4ieGyIU1N7XxY5-
O9YjZgNE9OXf10YYV4DkrznWjZyVNR25bCINZtJd02LdbPHvyANoq2Lh1IPdBjeRRHJ5W-98_n-
qM4AJ3SZuugNA0EyISZIxTe0P_Md_N22JWddzQTpELBZ82McR7bQmZpOlngFDlHkffeg'
HTTP/2 403
content-type: text/plain; charset=utf-8
content-length: 106

Forbidden (user=system:serviceaccount:kube-system:kube-proxy, verb=get, resource=nodes,
subresource=proxy)

kube-proxy-to-Node Authentication and Authorization Request Response

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 13

As expected, the service account by default does not have permissions to communicate with

kubelet. Further RBAC permissions for this service account are described in the Node to API

section.

Node to API

An attacker who has compromised a node will have access to at least two sets of credentials

that can be used to authenticate to the kube-apiserver, X509 certificate for kubelet and a

service account token for kube-proxy. Other sets of credentials could be available from Pod(s)

and are dependent on configuration.

kubelet

The kubelet uses an X509 certificate to authenticate itself to kube-apiserver. In Kubernetes

versions prior to v1.8, a default ClusterRole was used for authorization. This role was overly

permissive, for example, it allowed a node to read all secrets for the entire cluster. In current

Kubernetes versions the default ClusterRole and ClusterRoleBinding are still created, but

no subjects are present, preventing them from being used without modification.

$ kubectl get clusterrolebinding system:node -o json | jq .subjects
Null

ClusterRoleBinding system:node Subjects

These RBAC rules were replaced with the Node Authorizer and NodeRestriction plugins. A

comprehensive review of these controls was performed, culminating in an attack surface

mapping document attached as a separate document to this report. This document shows the

efficacy of the combined controls as well as the residual risk. Each plugin is discussed below.

Node Authorizer

The Node Authorizer is used by kube-apiserver to perform authorization when authenticating

as a node to Kubernetes components including kubelet (both local and on a sibling node) and

kube-apiserver. This is a special purpose authorization plugin that operates alongside another

authorization plugin, typically RBAC. The reason for this is straight-forward. Using RBAC rules

it is not possible to apply fine grained control to a sensitive API. For example, RBAC controls

can allow or deny access to secrets at the namespace level, but the Node Authorizer can

control access to only secrets that are mounted in a Pod running on a node.

This plugin is critical to reducing the impact of a compromised node. Due to this, it’s worth

stepping through the code to further understand the controls.

First, the user from the previously processed X509 certificate is used to ensure that this is a

node, checking for the system:node prefix.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 14

func (r *NodeAuthorizer) Authorize(ctx context.Context, attrs authorizer.Attributes)
(authorizer.Decision, string, error) {
 nodeName, isNode := r.identifier.NodeIdentity(attrs.GetUser())
 if !isNode {
 // reject requests from non-nodes
 return authorizer.DecisionNoOpinion, "", nil
 }
 if len(nodeName) == 0 {
 // reject requests from unidentifiable nodes
 klog.V(2).Infof("NODE DENY: unknown node for user %q", attrs.GetUser().GetName())
 return authorizer.DecisionNoOpinion, fmt.Sprintf("unknown node for user %q",
attrs.GetUser().GetName()), nil
 }

Node Authorizer Node Validation

Next, if the request references an object resource in the API, it falls through functions that

are designed for a resource type. Each of these functions ensures that the requested resource

has some ongoing relationship to the node in addition to restricting which verbs (get, create,

list, watch, etc.) are allowed. The relationship mapping is done using an in-memory graphing

package that maintains the state of the cluster.

For example, when a request comes from a node for a secret, the graph is traversed from the

secret to the node to ensure that relationship exists.

 // subdivide access to specific resources
 if attrs.IsResourceRequest() {
 requestResource := schema.GroupResource{Group: attrs.GetAPIGroup(), Resource:
attrs.GetResource()}
 switch requestResource {
 case secretResource:
 return r.authorizeReadNamespacedObject(nodeName, secretVertexType, attrs)
 case configMapResource:
 return r.authorizeReadNamespacedObject(nodeName, configMapVertexType, attrs)
 case pvcResource:
 if r.features.Enabled(features.ExpandPersistentVolumes) {
 if attrs.GetSubresource() == "status" {
 return r.authorizeStatusUpdate(nodeName, pvcVertexType, attrs)
 }
 }
 return r.authorizeGet(nodeName, pvcVertexType, attrs)
 case pvResource:
 return r.authorizeGet(nodeName, pvVertexType, attrs)
 case vaResource:
 return r.authorizeGet(nodeName, vaVertexType, attrs)
 case svcAcctResource:
 return r.authorizeCreateToken(nodeName, serviceAccountVertexType, attrs)
 case leaseResource:
 return r.authorizeLease(nodeName, attrs)
 case csiNodeResource:
 return r.authorizeCSINode(nodeName, attrs)
 }

Node Authorizer Resource Request Logic

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 15

When an incoming request is not operating on configmaps, secrets,

persistentvolumeclaims, persistentvolumes, volumeattachments, serviceaccounts,

leases, or csinodes; or is not for an object at all, a set of statically defined RBAC rules are

used.

These rules are available at in the relative code path for the Kubernetes repository at

plugin/pkg/auth/authorizer/rbac/bootstrappolicy/policy.go.

The following table summarized the allowed actions:

RESOURCE ACTION

tokenreviews create

subjectaccessreviews create

localsubjectaccessreviews create

services get, list, watch

nodes create, get, list, watch, update, patch

nodes/status update, patch

events create, update, patch

pods get, list, watch, create, delete

pods/status update, patch

pods/eviction create

secrets get, list, watch

configmaps get, list, watch

persistentvolumeclaims get

persistentvolumes get

endpoints get

certificatesigningrequests create, get, list, watch

leases get, create, update, patch, delete

volumeattachments get

serviceaccounts/token create

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 16

Many of these rule’s conflict with the previous logic discussed above. This is known and stated

many times throughout the comments. For example, regarding the rules created for secrets:

// Use the Node authorization mode to limit a node to get secrets/configmaps referenced by
pods bound to itself.

Bootstrap Policy Comment

A hypothetical authorization bypass could arise if an attacker could cause a request to fail the

attrs.IsResourceRequest() check while still being usable by the server. During testing, no

scenario was identified where this was possible.

Several rules listed would allow an attacker to break the integrity of critical components

related to multi-tenancy and the cluster, notably the ability to update a node and Pod. Further

inspection and restrictions are handled by the NodeRestriction admission plugin. Other rules

would allow an attacker to retrieve potentially sensitive information about resources in the

cluster. This could be an acceptable risk when multi-tenancy is used in terms of different

teams within the same organization, but unacceptable within the context of many

organizations.

NodeRestriction

The NodeRestriction plugin is an admission plugin which further limits what objects Kubelet

can modify. Admission plugins are executed by kube-apiserver after authentication and

authorization and prior to object persistence.

This plugin is critical to reducing the impact of a compromised node, particularly in a multi-

tenant environment. Due to this, it’s worth stepping through the code to further understand

the controls.

Similar to the Node Authorizer, the plugin first verifies that the request came from a node.

// Admit checks the admission policy and triggers corresponding actions
func (p *Plugin) Admit(ctx context.Context, a admission.Attributes, o
admission.ObjectInterfaces) error {
 nodeName, isNode := p.nodeIdentifier.NodeIdentity(a.GetUserInfo())

 // Our job is just to restrict nodes
 if !isNode {
 return nil
 }

 if len(nodeName) == 0 {
 // disallow requests we cannot match to a particular node
 return admission.NewForbidden(a, fmt.Errorf("could not determine node from user
%q", a.GetUserInfo().GetName()))
 }

NodeRestriction Node Validation

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 17

Next, individual functions are used to validate modifications depending on the resource type.

Logic exists for pods, nodes, persistentvolumeclaims, serviceaccounts, leases, and

csinodes.

switch a.GetResource().GroupResource() {
case podResource:
 switch a.GetSubresource() {
 case "":
 return p.admitPod(nodeName, a)
 case "status":
 return p.admitPodStatus(nodeName, a)
 case "eviction":
 return p.admitPodEviction(nodeName, a)
 default:
 return admission.NewForbidden(a, fmt.Errorf("unexpected pod subresource %q, only
'status' and 'eviction' are allowed", a.GetSubresource()))
 }

case nodeResource:
 return p.admitNode(nodeName, a)

case pvcResource:
 switch a.GetSubresource() {
 case "status":
 return p.admitPVCStatus(nodeName, a)
 default:
 return admission.NewForbidden(a, fmt.Errorf("may only update PVC status"))
 }

case svcacctResource:
 return p.admitServiceAccount(nodeName, a)

case leaseResource:
 return p.admitLease(nodeName, a)

case csiNodeResource:
 return p.admitCSINode(nodeName, a)

default:
 return nil
}

NodeRestriction Sub Resource Logic

Atredis Partners performed a line-by-line review of each of these functions in combination

with dynamic testing in an attempt to identify lapses in controls or other issues that could

allow an attacker to affect the security of the cluster. No major issues were identified.

Additionally, controls critical to multi-tenancy are adequate, for example, node cannot modify

its own taints or create a Pod that is not a mirror Pod.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 18

Residual Risk

The following table summarizes permissions allowed from kubelet to kube-apiserver when the

Node Authorizer and NodeRestriction plugins are used in combination with each other. The

“RBAC” control is in reference to the permissions from the bootstrap policy discussed

previously.

Resource Verb Limitation Control

tokenreviews create

RBAC

subjectaccessreviews create

RBAC

localsubjectaccessreviews create

RBAC

services get, list, watch

RBAC

nodes get, list, watch

RBAC

nodes get, list, watch,

update, patch, create
• A node can only be

created with its own

name

• Nodes are only allowed
to update themselves

• Nodes are not allowed to
update taints

NodeRestriction

RBAC

nodes/status update, patch • Nodes can only update

the status of themselves

RBAC

events create, update, patch

RBAC

secrets get • Nodes cannot list secrets

• Nodes are only allowed
to get secrets for Pods

that are scheduled on

them

NodeAuthorizer

RBAC

configmaps get • Nodes cannot list

configmaps

• Nodes can only get
configmaps for Pods that

are scheduled on them

NodeAuthorizer

RBAC

persistentvolumeclaims get • Nodes are only allowed

to view claims that are

attached to a Pod that is
scheduled on them

NodeAuthorizer
RBAC

persistentvolumes get • Nodes are only allowed

to view volumes that are

attached to a Pod that is

scheduled on them

NodeAuthorizer

RBAC

endpoints get

RBAC

certificatesigningrequests create, get, list, watch

RBAC

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 19

Resource Verb Limitation Control

leases get, create, update,

patch, delete
• Nodes can only update

and view leases for

themselves

NodeAuthorizer

RBAC

volumeattachments get • Nodes can only view a

volumeattachment that

is attached to a Pod
scheduled on them

NodeAuthorizer

RBAC

serviceaccounts/token create • Nodes cannot create a

token for a service

account unless there is a

relationship to a Pod that
is scheduled on the node

NodeAuthorizer
NodeRestriction

RBAC

csinodes get, create, update,
patch, delete

• Nodes can only interact

with a csinode object if

the name matches the

node name

NodeAuthorizer
NodeRestriction

pods get, list, watch,

create, delete
• Nodes can only delete

Pods scheduled on

themselves

• Nodes can only create
mirror Pods

• Nodes can only create a
Pod bound to itself

RBAC

NodeRestriction

Several of these API endpoints could allow an attacker to view information about the cluster

and tenants and others could be used to cause confusion to other tenants and cluster

administrators. Each endpoint that presents some residual risk is discussed below.

Pods

The Pods API allows Kubernetes operators to perform create, read, update, and delete (CRUD)

operations against Pods in the Kubernetes cluster. An attacker that is able to leverage

authentication material from a compromised node can authenticate to the Kubernetes API

server and retrieve a detailed list of Pods running in the cluster, across all namespaces, via

the following API endpoints:

/api/v1/namespaces/{namespace}/pods
/api/v1/pods
/api/v1/watch/namespaces/{namespace}/pods
/api/v1/watch/namespaces/{namespace}/pods/{name}
/api/v1/watch/pods

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 20

An example of cross-namespace information disclosure can be seen below, including the Pod

name, the namespace it has been deployed into, and details of the manifest used to create

the Pod in the first place:

curl -s -ki https://100.79.47.55:6443/api/v1/watch/pods --cert kubelet-client-current.pem -
-key kubelet-client-current.pem

cURL request to api/v1/watch/pods endpoint

"metadata": {
 "name": "nginx",
 "namespace": "default",
 "uid": "9e25c3bf-b382-4ecf-ab16-35058b8a9723",
 "resourceVersion": "97598",
 "creationTimestamp": "2021-04-29T17:06:27Z",
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"v1\",\"kind\":\"Pod\",\"metadata\":{\"annotations\":{},\"name\":\"nginx\
",\"namespace\":\"default\"},\"spec\":{\"containers\":[{\"image\":\"nginx\",\"imagePullPoli
cy\":\"IfNotPresent\",\"name\":\"nginx\"}],\"nodeSelector\":{\"foo\":\"bar\"}}}\n"
 },
[…snip…]

Response from api/v1/watch/pods endpoint

The impact of this information disclosure is that an attacker could potentially identify other

tenants in the cluster, along with the types of workloads that they are running.

Services

The services API allows Kubernetes operators to perform CRUD operations against services

running in the Kubernetes cluster. An attacker that can leverage authentication material from

a compromised node can authenticate to the Kubernetes API server and retrieve a detailed

list of services running in the cluster, across all namespaces, via the following API endpoints:

/api/v1/namespaces/{namespace}/services
/api/v1/services
/api/v1/watch/namespaces/{namespace}/services
/api/v1/watch/namespaces/{namespace}/services/{name}
/api/v1/watch/services

An example of cross-namespace information disclosure for Kubernetes services can be seen

below. Some of the information disclosed includes service name, the namespace the service

is associated with, and any associated labels.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 21

curl -s -ki https://100.79.47.55:6443/api/v1/watch/services --cert kubelet-client-
current.pem --key kubelet-client-current.pem

cURL Request to api/v1/watch/services

[...snip...]
{
 "type": "ADDED",
 "object": {
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "nginx-service",
 "namespace": "tenant1",
 "uid": "a1422774-f55b-4ef9-957e-8544b0371b41",
 "resourceVersion": "152399",
 "creationTimestamp": "2021-04-30T18:54:55Z",
 "labels": {
 "app": "tenantapp1"
 },
[...snip...]

Response from api/v1/watch/services

The impact of an attacker being able to call API endpoints that list running services is that

they could potentially identify other tenants in the cluster, along with the types of services

they are exposing.

Events

The events API is used to report extra information about various objects, such as warnings

and errors during Pod creation. An attacker has no restrictions in the type of events they can

create. This in conjunction with other APIs could be used to tie events to cluster resources or

other tenant’s workloads. The impact of this is dependent on how these events are used by

customers and the platform provider. It is likely that events about a Pod would want to be

shown to a tenant, this could cause confusion and a lack of confidence in the service.

Nodes

The node API gives Kubernetes operators insight into the nodes running in the cluster such

as the versions of kubelet they are running, the Operating System (OS) being used, and the

kernel version. An attacker that is able to leverage authentication material from a

compromised node can authenticate to the Kubernetes API server and retrieve detailed

information for all nodes running in the cluster via the following API endpoints:

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 22

/api/v1/nodes
/api/v1/nodes/{name}
/api/v1/watch/nodes
/api/v1/watch/nodes/{name}

An example of information disclosure when it comes to Kubernetes nodes can be seen below.

Some of the information disclosed includes OS version, kernel version, kubelet version, kube-

proxy version, and the container runtime version.

curl -s -ki https://100.79.47.55:6443/api/v1/watch/nodes --cert kubelet-client-current.pem
--key kubelet-client-current.pem

cURL Request to api/v1/watch/nodes Endpoint

[...snip...]
 "nodeInfo": {
 "machineID": "c9653659bd2a4a498ffd1ef8e2b95d9a",
 "systemUUID": "0ee84d56-6e5f-072a-a2a5-48795e2dbefc",
 "bootID": "50f1bb6f-4656-4331-adae-041e81c97409",
 "kernelVersion": "5.4.0-72-generic",
 "osImage": "Ubuntu 20.04.2 LTS",
 "containerRuntimeVersion": "containerd://1.4.4",
 "kubeletVersion": "v1.21.0",
 "kubeProxyVersion": "v1.21.0",
 "operatingSystem": "linux",
 "architecture": "amd64"
 },
[...snip...]

Response from api/v1/watch/nodes Endpoint

The impact of an attacker being able to call the node API endpoints is that they could use

these endpoints to gather information about all the worker nodes in the cluster. Kernel and

OS version information could be used to further refine attacks against the cluster.

nodes/status

The nodes/status API has potential for an attack. This endpoint allows a node to set its

address, both via IP Address and hostname. The following request shows this in action,

updating the IP address of nodea to that of nodeb:

root@nodea# curl --key /var/lib/kubelet/pki/kubelet-client-current.pem --cert
/var/lib/kubelet/pki/kubelet-client-current.pem https://kube-
apiserver:6443/api/v1/nodes/nodea/status -X PATCH -H 'Content-Type: application/json-
patch+json' -d '[{"op": "replace", "path": "/status/addresses/0/address", "value":
"nodeb"}]' -ki

nodes/status PATCH

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 23

Modifying the IP address is this way causes kube-apiserver to send requests destined for a

node to an arbitrary address. Relaying requests is also possible using a generic TCP relay on

the node as well. This works because kube-apiserver does not verify the TLS connection when

connecting to kubelet (because connections are always made by IP address).

For example, assuming the request above, an attacker could relay requests for nodea to

nodeb. If a cluster admin starts a local proxy and sends the following request to kube-

apiserver, they will get a response from nodeb.

$ kubectl proxy --port 8080 &
$ curl http://127.0.0.1:8080/api/v1/nodes/nodea/proxy/pods
{"kind":"PodList","apiVersion":"v1","metadata":{},"items":[{"me --snip--

Node Proxy Request

At first glance, redirecting requests to an arbitrary node may seem as if it does not present

much of a risk but is definitely something to keep in mind when designing components that

potentially use or present data from the kubelet API. Any tooling or debugging using a non-

namespaced kubelet API would not be able to depend on the integrity of the data returned.

Lateral movement using this same scenario is not possible as most requests require a

namespace, for example, the exec API /exec/<podNamespace>/<podID>/<containerName>. As

a result, an attacker cannot coerce some external component into successfully relaying an

authorized request as it would result in a HTTP 404 Not Found error. As an aside, a modified

kubelet could HTTP redirect requests to another kubelet, this scenario was identified and fixed

with CVE-2018-10021021 (Atredis Partners validated these fixes).

The scenario described above should be taken into account if there are future updates to the

kubelet API.

kube-proxy

The system:node-proxier ClusterRole is used for RBAC when authenticating as the

system:kube-proxy user. The role has the following permissions.

RESOURCE ACTION

endpoints list, watch

services list, watch

nodes get, list, watch

1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1002102

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 24

RESOURCE ACTION

events create, patch, update

endpointslices list, watch

None of these resources and associated actions present any risk that hasn’t been discussed

previously.

Node Bootstrap

A bootstrap token is used by kubeadm to join a new node to a cluster. A special form of

authentication is used when authenticating to kube-apiserver with a bootstrap token. The

bootstrap token must exist in the kube-system namespace and not be expired. The default

expiration is 23 hours, but an expiration is not required.

$ sudo kubeadm token list
TOKEN TTL EXPIRES USAGES
DESCRIPTION EXTRA GROUPS
pl7c73.bangf249rzznj2fd 23h 2021-05-22T05:43:57Z authentication,signing
<none>
system:bootstrappers:kubeadm:default-node-token

Bootstrap Token List

Bootstrap tokens are stored as secrets and can be accessed by anyone with access to the

secrets API in the kube-system namespace.

$ kubectl get secret bootstrap-token-pl7c73 -n kube-system -o yaml
apiVersion: v1
data:
 auth-extra-groups: c3lzdGVtOmJvb3RzdHJhcHBlcnM6a3ViZWFkbTpkZWZhdWx0LW5vZGUtdG9rZW4=
 expiration: MjAyMS0wNS0yMlQwNTo0Mzo1N1o=
 token-id: cGw3Yzcz
 token-secret: YmFuZ2YyNDlyenpuajJmZA==
 usage-bootstrap-authentication: dHJ1ZQ==
 usage-bootstrap-signing: dHJ1ZQ==
kind: Secret
metadata:
 creationTimestamp: "2021-05-21T05:43:57Z"
 name: bootstrap-token-pl7c73
 namespace: kube-system
 resourceVersion: "285209"
 uid: 4fabc9e3-413e-4dff-b165-778ea749969d
type: bootstrap.kubernetes.io/token

Bootstrap Token Secret

The RBAC rules created by kubeadm during cluster creation allow a bootstrap token to

generate a CertificateSigningRequest (CSR). A CSR originating from the group associated

with a bootstrap token will be auto-approved by the kube-controller-manager.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 25

An attacker with access to a bootstrap token would be able to create a CSR for an existing

node, and once auto-approved, use the associated certificate to impersonate as that node to

kube-apiserver. This would allow an attacker to gain access to any secret in any Pod in the

entire cluster. This attack is fairly common, particularly with Google Kubernetes Engine, where

TLS bootstrapping information is stored in instance metadata.

An attacker could also use the bootstrap token to create a new node with taints of another

tenant. This would allow them to steer tenant workloads to their node and gain unauthorized

access to secrets and data.

Special care must be taken to ensure that bootstrap tokens are never left over on a node.

Additionally, tight controls and monitoring should be put into place to control creation and

access to these tokens.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 26

Threat Model Overview

Atredis created the following Trust Levels based on scenarios provided by Salesforce and an

understanding of the overall attack surface and dataflows.

• Node level attacker: An attacker who has leveraged one or more vulnerabilities to gain

root level access to a Kubernetes node. A node level attacker will have access to at

least two sets of credentials from kubelet and kube-proxy. When discussing threats, it

is assumed that one of these credential sets may be used. A node level attacker may

have access to TLS bootstrap credentials and is discussed as a different trust level.

• Bootstrap level attacker: An attacker who has gained access to TLS bootstrap

credentials and has network access to the control plane or data plane.

• Tenant level attacker: An attacker who has access to tenant facing components that

communicate with the kube-apiserver, for example, a tenant dashboard where Pods

can be created.

• Control plane attacker: An attacker with network level access to one or more control

plane components (e.g., kube-apiserver, etcd) and may have access to valid

credentials (credential access is irrelevant to threat/impact).

• Unauthenticated control plane attacker: An attacker who has network level access to

one or more control plane components but does not have valid credentials.

• Authenticated control plane attacker: An attacker who has network level access to one

or more control plane components and valid credentials. An example could be an

insider threat, but not necessarily. Atredis did not threat model insider threats.

• Unauthenticated data plane attacker: An attacker who has network level access to one

or more data plane components but does not have valid credentials.

• Authenticated data plane attacker: An attacker who has network level access to one

or more data plane components and valid credentials. An example could be an insider

threat, but not necessarily. Atredis did not threat model insider threats.

The focus on this assessment was identifying threats, impacts, and mitigation against a node

level attacker. Other areas have been fairly well tested and documented, and the node level

attacker presents the most areas of concern in a multi-tenant environment.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 27

Threat ID 1

Scenario

A node level attacker is able to interact with kubelet’s HTTP API on another tenant’s node or

the control plane node.

Impact

Unauthorized access to the kubelet HTTP API would allow an attacker to execute commands

on any Pod scheduled on the node. Executing commands would allow access to another

tenant’s programs and data.

Mitigation

Anonymous access to kubelet must be disabled and X509 authentication enabled.

The Node Authorizer does not allow users with the system:node: prefix access to the kubelet

API (authorization is delegated using a SubjectAccessReview to kube-apiserver).

Network filtering should be used to prevent node-to-node communications across tenants,

CNI plugins such as calico may provide this functionality.

Testing and Comments

Extensive testing and code review was performed against the kubelet API and Node

Authorizer. No potential for bypass of authentication or authorization controls was identified.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 28

Threat ID 2

Scenario

Unauthenticated data plane attacker is able to interact with the kubelet HTTP API.

Impact

Unauthorized access to the kubelet HTTP API would allow an attacker to execute commands

on any Pod scheduled on the node. Executing commands would allow access to another

tenant’s programs and data.

Mitigation

Anonymous access to kubelet must be disabled and X509 authentication enabled. Network

filtering should be used to only allow access to kubelet from authorized endpoints (kube-

apiserver).

Testing and Comments

Extensive testing and code review was performed against the kubelet API and authentication

controls. No potential for authentication bypass was identified and no vulnerabilities were

identified.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 29

Threat ID 3

Scenario

A node level attacker is able to capture and replay incoming credential material using the

operating system or a patched kubelet.

Impact

An attacker able to capture usable credentials for kubelet would be able to authenticate to

kubelet on another tenant’s node and would allow them to execute commands on any Pod

scheduled on that node. This would allow access to another tenant’s programs and data.

Mitigation

Configure kubelet to only use X509 authentication. API bearer tokens should not be used

(webhook authentication). Design systems and processes so that service account tokens are

never sent to kubelet.

Testing and Comments

X509 certificates prevent capture and relaying from being useful as an attacker does not have

access to the associated private key for a certificate. A service account token sent to kubelet

would be usable.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 30

Threat ID 4

Scenario

A node level attacker creates a CSR to impersonate another node or create a rogue node.

Impact

Unless approved by a third-party service or administrator, this would have no impact.

Mitigation

The kube-controller-manager csrapprover controller auto approves incoming CSRs for the

system:node: prefix, but only when the requested certificate matches the name of the node

that submitted the request. No further mitigation is required.

Testing and Comments

Extensive code review and testing was conducted against the csrapprover controller. No

issues were identified.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 31

Threat ID 5

Scenario

A bootstrap level attacker creates a CSR to impersonate another node or create a rogue node.

Impact

By impersonating any node in the cluster, an attacker would be able to gain access to any

secret that is currently mounted in a running Pod. Creating a rogue node would allow an

attacker to create a node with taints of any tenant (or all tenants), steering workloads (Pods)

to themselves.

Mitigation

Any trace of a bootstrap token must be removed from all nodes. Bootstrap tokens should

always be created with a short expiration. Only privileged administrators should be able to

create or use them. Monitoring processes should be put into place to detect and respond to

the creation of a CSR using a bootstrap token. This is going to be a typical event in an

automated environment, but it should be possible to detect anomalies such as the creation of

a CSR for an existing node. Kubernetes may be able to make design changes that prevent a

bootstrap token from being used to create a CSR for an existing node.

Testing and Comments

No testing was needed for this scenario as this scenario is inherit in the design. Attacks using

TLS bootstrap material are well known and documented.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 32

Threat ID 6

Scenario

A node level attacker is able to make authorized requests to the kube-apiserver.

Impact

The impact of an authorized request is dependent on the authorization plugins in use. The

Node Authorizer and NodeRestriction plugins allow an attacker to potentially view sensitive

information about the cluster and other tenants. Allowed endpoints and residual risks are

documented in the attack surface mapping documents.

Mitigation

The Node Authorizer and NodeRestriction plugins should be enabled at a minimum to reduce

the impact of authorized requests to the kube-apiserver. There are no mitigations currently

for preventing access to potentially sensitive information.

Testing and Comments

Extensive review was conducted against all allowed endpoints in an attempt to subvert

controls and gain access to other tenant’s information. No significant issues were identified

that are not mitigation by the Node Authorizer and NodeRestriction plugins.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 33

Threat ID 7

Scenario

A node level attacker uses the kube-apiserver to modify the taints of their node.

Impact

Modifying the taints for a node would allow an attacker to steer workloads of another tenant

to itself.

Mitigation

The NodeRestriction plugin prevents a node from modifying its own taints. A node is also

not able to create a node that already exists.

Testing and Comments

Extensive code review was conducted against the NodeRestriction plugin. No issues were

identified that would allow a node’s taints to be modified.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 34

Threat ID 8

Scenario

A node level attacker uses the kube-apiserver to modify the labels of their node.

Impact

Modifying the labels for a node does not have any direct impact on the cluster either in or out

of a multi-tenant environment. The impact is dependent on solutions built by the cluster

implementor using labels.

Mitigation

Don’t depend on the integrity of node labels when designing systems and processes. Use the

NodeRestriction plugin to prevent a node from adding labels that may have special meaning

in the Kubernetes cluster.

Testing and Comments

No further testing was required. The NodeRestriction plugin prevents labels from being

added that may have some internal control over Kubernetes components.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 35

Threat ID 9

Scenario

An authenticated control plane attacker creates a secret containing a bootstrap token.

Impact

If the bootstrap token is created in the kube-system namespace they would be able to

impersonate any node in the cluster or create a new node, the impact here has been

previously discussed. Bootstrap tokens created in a different namespace have no impact.

Mitigation

Use RBAC controls to limit what users can create secrets in the kube-system namespace.

Monitor for creation of secrets in the kube-system namespace, particularly bootstrap tokens.

Testing and Comments

Code review and dynamic testing was conducted to ensure that bootstrap tokens created

outside of the kube-system namespace could not be used for authentication.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 36

Threat ID 10

Scenario

A node level attacker is able to interact with the kube-proxy HTTP API.

Impact

There is no impact.

Mitigation

No mitigation is required.

Testing and Comments

Extensive code review and dynamic testing was conducted against the kube-proxy API. No

endpoints exist that disclose sensitive information about the cluster or tenant and endpoints

exist that can be used to change state. Further, no issues were identified that would allow an

attacker to subvert the underlying node.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 37

Threat ID 11

Scenario

A control plane attacker is able leverage a flaw to exhaust resources or crash the kube-

apiserver.

Impact

A denial-of-service (DoS) attack against the kube-apiserver would affect all tenants in the

cluster and may cause Pods to not execute or services to work.

Mitigation

Ensure the kube-apiserver and associated components are kept up to date. Monitor for

availability and resource use and build detection for abnormal HTTP requests to the server.

Testing and Comments

DoS issues have been identified in the kube-apiserver in the past2. No new issues were

identified during testing. Testing was conducted using various scenarios such as submitting

many CSRs.

2 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1002100

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 38

Threat ID 12

Scenario

A data plane attacker is able to leverage a flaw to exhaust resources or crash kubelet on a

node.

Impact

A DoS attack against kubelet would prevent new Pods from running on the node and could

affect existing workloads.

Mitigation

Ensure Kubernetes components on nodes, including kubelet, are kept up to date. Network

filtering should be used to only allow access to kubelet from authorized endpoints such as

kube-apiserver.

Testing and Comments

DoS issues have been identified in kubelet in the past. No new issues were identified during

testing. Extensive code review of the kubelet server was conducted.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 39

Threat ID 13

Scenario

A control plane attacker is able to compromise the kube-apiserver or the underlying Operating

System using an exploit.

Impact

Impact is dependent on the nature of the exploit, but a compromise of the kube-apiserver

could result in a compromise of tenant data such as secrets, as well as access to all nodes

and Pods in the cluster.

Mitigation

Ensure Kubernetes components, systems, and services are kept up to date and appropriate

security patches are applied regularly. Apply strict network filtering to the kube-apiserver and

services on the hosting system. Make use of monitoring and detection capabilities to identify

unauthorized access.

Testing and Comments

The kube-apiserver is the most reviewed and tested component in the Kubernetes ecosystem.

No critical vulnerabilities have been identified in the past that could allow an attacker to

execute code.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 40

Threat ID 14

Scenario

An unauthenticated control plane attacker is able to access etcd.

Impact

Access to etcd would result in a compromise of secrets within the cluster, including bootstrap

and service account tokens. An attacker could also insert their own service account and

associated RBAC rules to completely compromise the entire cluster.

Mitigation

Use a combination of network filtering and mutual TLS authentication to prevent unauthorized

access to etcd. Ensure etcd and the underlying operating system are kept up to date.

Testing and Comments

No testing was conducted against etcd as it was outside the scope of this assessment.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 41

Threat ID 15

A node level attacker is able to relay, or otherwise direct authenticated requests destined for

the kubelet HTTP API to the kubelet HTTP API on another node.

Impact

An attacker could cause cluster administrators or services to read log files and Pod information

of another node. The impact of this is dependent on how this data is used. For example, if a

service was designed to pull log files from a tenant’s node (using kubelet) and present them

in some way, an attacker could pull logs for an arbitrary node.

Mitigation

Design services and processes in a way that does not depend on the integrity of kubelet

connections. SSH tunneling could prevent this issue as SSH connections to the wrong node

should result in key errors.

Testing and Comments

Extensive testing was conducted using multiple scenarios. In no scenario was it possible to

coerce a connection to URLs containing a different namespace path, including HTTP redirect

attacks.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 42

Threat ID 16

Scenario

A tenant level attacker is able to schedule a Pod on an arbitrary node.

Impact

Impact is dependent if an attacker can escape Pod restrictions and gain access to the

underlying node. If access to the node was obtained, the attacker would be able to access

additional Pods running on the node.

Mitigation

Uses taints to ensure Pods are only scheduled on nodes owned by a tenant. Apply tight

inspections around Pod specifications to ensure that taints are explicit. Prevent a tenant from

providing their own taints.

Restrict the permissions of Pods and volumes to prevent users from escaping a Pod.

Application kernels such as gVisor could be used to provide additional protections.

Testing and Comments

Dynamic testing and code review was conducted in an attempt to subvert taints within the

ecosystem. Further, code review and dynamic testing of the kube-scheduler should be noted

as an area for future work. The taint and tolerations plugin for the kube-scheduler was

assessed thoroughly.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 43

Threat ID 17

Scenario

A tenant user is able to mount secrets of another tenant in a Pod they control.

Impact

An attacker would be able to view secrets of another tenant.

Mitigation

Use namespaces to separate clients. Ensure that a user cannot control the namespace that

resources are created in.

Testing and Comments

Namespaces are an effective control, however, given the number of scenarios where secrets

are a target it would be best to research additional controls and possible alternative storage

systems. No issues were identified with namespace controls during testing.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 44

Threat ID 18

Scenario

A tenant user is able to mount a privileged service account in a Pod they control.

Impact

The impact is dependent on the permissions of the service account. An attacker would be able

to access the kube-apiserver using the service account credentials.

Mitigation

Do not allow tenants to provide service account in formation in their Pod specification files.

Additionally, disable automounting the default service account token by explicitly setting

automountServiceAccountToken: false in the Pod specification.

Testing and Comments

Great care should be taken surrounding the creation and monitoring of service account tokens.

This mitigations for this scenario did not require any specific testing. No issues were identified

that would allow an attacker to mount service accounts of a different namespace.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 45

Threat ID 19

Scenario

A node level attacker places a backdoor on peripherals with non-volatile memory (e.g., BMC,

GPU) exposed to the host via firmware update or management interface.

Impact

Impact is dependent on the nature of the peripheral and the backdoor and could allow an

attacker to maintain root level access on the node across tenant switch.

Mitigation

Ensure that firmware signatures are validated and measure non-volatile memory out-of-band

between tenant switch.

Testing and Comments

This is within the threat model of cloud providers and could be considered out-of-scope based

on their existing mitigations.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 46

Findings and Recommendations

The following section outlines findings identified via manual and automated testing over the

course of this engagement. Where necessary, specific artifacts to validate or replicate issues

are included, as well as Atredis Partners’ views on finding severity and recommended

remediation.

Findings Summary

The below tables summarize the number and severity of the unique issues identified

throughout the engagement.

CRITICAL HIGH MEDIUM LOW INFO

0 0 0 4 0

Findings Detail
FINDING NAME SEVERITY
Kubeadm: Kubelet Configured with Webhook Authentication Low

Kube-apiserver: Insecure TLS Configuration Low

Kube-apiserver: Bootstrap Tokens Allowed without Expiration Low

Kube-apiserver: NodeRestriction Does Not Limit Events API Low

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 47

Kubeadm: Kubelet Configured with Webhook Authentication

Severity: Low

Finding Overview

The kubeadm deployment tool configures kubelet to use webhook authentication mode. This

mode allows bearer tokens to be used for authentication. An attacker with root level access

to a node would be able to capture incoming bearer tokens and use them to authenticate to

kube-apiserver or a sibling node.

There is no reason to authenticate directly to kubelet using a service account. Further, service

accounts in a multi-tenant environment should be used sparingly and permissions significantly

limited. If this method of authentication is not enabled, there is nothing stopping a service or

user from accidently sending a request containing a service account token but disallowing it

at the kubelet level would prevent lateral movement.

Finding Detail

When kubeadm is used to deploy a node, kubelet contains the following authentication modes

in its configuration file.

$ cat /var/lib/kubelet/config.yaml
apiVersion: kubelet.config.k8s.io/v1beta1
authentication:
 anonymous:
 enabled: false
 webhook:
 cacheTTL: 0s
 enabled: true
 x509:
 clientCAFile: /etc/kubernetes/pki/ca.crt

kubelet Authentication Config

The webhook authentication mode allows bearer tokens used in conjunction with a third-party

service and service account tokens to authenticate to kubelet. If request containing a bearer

token is used to authenticate to kubelet, an attacker could use a modified kubelet or system

components such as a kernel module to intercept these credentials.

Since a bearer token does not have the same inherit security traits of a X509 certificate, an

attacker would be able to use this token to authenticate to another kubelet instance or kube-

apiserver. The impact would be dependent on the authorization controls around the account

used.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 48

Consider a service account created with the following permissions.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: cluster-debug
 namespace: default

Hypothetical Service Account Definition

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: debug-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: cluster-debug
 namespace: default

Hypothetical ClusterRoleBinding

Note, a service account with the cluster-admin ClusterRole should never be created but is

simple for demonstrations purposes.

The service account token is then used by either a service or a user to make an authenticated

request to kubelet.

$ curl -ki https://192.168.7.213:10250/pods -H "Authorization: bearer $(kubectl get secret
cluster-debug-token-fvn8d -o json | jq -r '.data.token' | base64 -d)"
HTTP/2 200
content-type: application/json
date: Fri, 21 May 2021 07:12:18 GMT

{"kind":"PodList","apiVersion":"v1","metad

kubelet Service Account Authentication

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 49

There are various ways to intercept or otherwise access the authorization header from a

compromised node. The simplest would be to patch the HTTP handler for the kubelet server

with the following code.

diff --git a/pkg/kubelet/server/server.go b/pkg/kubelet/server/server.go
index 9c2ab3c0a3a..504f24e3f35 100644
--- a/pkg/kubelet/server/server.go
+++ b/pkg/kubelet/server/server.go
 // ServeHTTP responds to HTTP requests on the Kubelet.
 func (s *Server) ServeHTTP(w http.ResponseWriter, req *http.Request) {
+
+ fmt.Printf("Authorization header %s\n", req.Header.Get("Authorization"))
+
 handler := httplog.WithLogging(s.restfulCont, statusesNoTracePred)

kubelet Server Patch

When running the patched version of kubelet, the authorization header is recoverable.

$ sudo ./kubelet --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --
kubeconfig=/etc/kubernetes/kubelet.conf --config=/var/lib/kubelet/config.yaml --container-
runtime=remote --container-runtime-endpoint=/run/containerd/containerd.sock --pod-infra-
container-image=k8s.gcr.io/pause:3.4.1 --node-ip=192.168.7.13

--snip--
I0521 07:07:55.710591 63177 reconciler.go:224]
"operationExecutor.VerifyControllerAttachedVolume started for volume \"kube-api-access-
267v4\" (UniqueName: \"kubernetes.io/projected/958bb27a-d122-4c27-be02-e4e0280a3831-kube-
api-access-267v4\") pod \"echo\" (UID: \"958bb27a-d122-4c27-be02-e4e0280a3831\") "
I0521 07:07:55.710734 63177 reconciler.go:157] "Reconciler: start to sync state"

Authorization header bearer
eyJhbGciOiJSUzI1NiIsImtpZCI6IjFUaE9Ra2thZ1ppS3Z1aWI1blVyWW1RWVBJVzJBMEpSUkFkbmNOMzlsNmcifQ.
eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1
lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImNsdXN0ZX
ItZGVidWctdG9rZW4tZnZuOGQiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uY
W1lIjoiY2x1c3Rlci1kZWJ1ZyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVp
ZCI6ImE3YmQ4ZTZjLTYwMWUtNDk3OC04MjljLTZjMDAwY2Q4ZmNkZSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3V
udDpkZWZhdWx0OmNsdXN0ZXItZGVidWcifQ.XG5LJLTxWXSrZa-
1936lAKBCvSbL9h7W_THYrlDEyHxh7Z910yo7TDqkT70dvVJO_kkeQtViM0TonJSV1-
uUBNfQeqwhf6_XqWYVtVhs75uyLR7y4nLRDhE9MA-
D9wSAe7x8RJB08bk15bL2gqNQVG7DGwb60wPO5yql3Iy9ok3X6nUerp8dE8e04thLcD6PP8kOj_ExrX1SW_mfIO2bPF
UIPFzwxUWKwXR6nFJgY69b0uuYshslh5a7WOyYOhUzpsF_ZtqKOMvmX0sVlWdv3HndixA_bwexgfaV6hwnVAGhYNHW8
gbAAomusxjQO1wA1F8ckzuKATSyLdliiTVFUg

Kubelet Authorization Header

As expected, this can now be used to authenticate to kube-apiserver and another kubelet

instance.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 50

Recommendation(s)

If possible, kubeadm should not enabled this authentication method by default. If this is not

resolved at the kubeadm, the kubelet config of a deployed node should have the webhook

authentication mode removed.

References

Kubernetes: kubelet Authentication:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-

authorization/

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-authentication-authorization/

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 51

Kube-apiserver: Insecure TLS Configuration

Severity: Low

Finding Overview

TLS connections originating from kube-apiserver to kubelet are not validated. This is a known

issue and has been documented in previous security assessments of Kubernetes performed

in 2019.

Requests are made by IP address which reduces the potential for attacks. Layer 2 attacks

such as ARP spoofing is possible.

This issue does allow a malicious kubelet to redirect traffic to an arbitrary address. The impact

of this attack is dependent on how use case.

Finding Detail

The use of InsecureSkipVerify: true is used extensively throughout the Kubernetes code

base.

277 // Proxying to pods and services is IP-based... don't expect to be able to verify the
hostname
278 proxyTLSClientConfig := &tls.Config{InsecureSkipVerify: true}
279 proxyTransport := utilnet.SetTransportDefaults(&http.Transport{

InsecureSkipVerify Go TLS Configuration

One attack scenario involves a node patching itself with the address of another node.

root@nodea# curl --key /var/lib/kubelet/pki/kubelet-client-current.pem --cert
/var/lib/kubelet/pki/kubelet-client-current.pem https://kube-
apiserver:6443/api/v1/nodes/nodea/status -X PATCH -H 'Content-Type: application/json-
patch+json' -d '[{"op": "replace", "path": "/status/addresses/0/address", "value":
"nodeb"}]' -ki

Node PATCH Address

Now, any traffic destined for nodea in the example above would be directed to nodeb. If some

services or user attempted to pull Pod information or log files from a node directly, they would

not be able to rely on the integrity of this data.

Depending on how systems are designed this could allow a tenant to pull data from a node of

another tenant, although this is very unlikely.

$ kubectl proxy --port 8080 &
$ curl http://127.0.0.1:8080/api/v1/nodes/nodea/proxy/pods
{"kind":"PodList","apiVersion":"v1","metadata":{},"items":[{"me --snip--

Example Node Proxy Request

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 52

Recommendation(s)

Design systems and processes in a way that do not depend on the integrity of these

connections. SSH tunneling may resolve this issue as well.

References

CWE-295: Improper Certificate Validation:

https://cwe.mitre.org/data/definitions/295.html

https://cwe.mitre.org/data/definitions/295.html

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 53

Kube-apiserver: Bootstrap Tokens Allowed without Expiration

Severity: Low

Finding Overview

Bootstrap tokens can be created without an expiration. Additionally, this is the default when

an expiration is not specified. This increases the likelihood of a successful attack given one is

recovered by an attacker.

Finding Detail

The following file can be used to create a token without an expiration.

apiVersion: v1
kind: Secret
metadata:
 name: bootstrap-token-5emizz
 namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
 auth-extra-groups: "system:bootstrappers:kubeadm:default-node-token"
 token-id: "5emizz"
 token-secret: "kq4gihvszzgn1p0r"
 usage-bootstrap-authentication: "true"
 usage-bootstrap-signing: "true"

Bootstrap Token YAML

After creation, there is no expiration provided.

$ kubectl get secret bootstrap-token-5emizz -n kube-system -o yaml
apiVersion: v1
data:
 auth-extra-groups: c3lzdGVtOmJvb3RzdHJhcHBlcnM6a3ViZWFkbTpkZWZhdWx0LW5vZGUtdG9rZW4=
 token-id: NWVtaXp6
 token-secret: a3E0Z2lodnN6emduMXAwcg==
 usage-bootstrap-authentication: dHJ1ZQ==
 usage-bootstrap-signing: dHJ1ZQ==
kind: Secret
metadata:
 creationTimestamp: "2021-05-23T21:24:02Z"
 name: bootstrap-token-5emizz
 namespace: kube-system
 resourceVersion: "344685"
 uid: ed122d0d-e4e9-4f48-8e3b-9d26ed02c663
type: bootstrap.kubernetes.io/token

Bootstrap Token Without Expiration

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 54

Recommendation(s)

Apply tight controls over the kube-system namespace and monitor for the creation of

bootstrap tokens, particularly without an expiration. An admission plugin could be written to

prevent bootstrap tokens without an expiration.

References

Kubernetes: Bootstrap Tokens:

https://kubernetes.io/docs/reference/access-authn-authz/bootstrap-tokens/

https://kubernetes.io/docs/reference/access-authn-authz/bootstrap-tokens/

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 55

Kube-apiserver: NodeRestriction Does Not Limit Events API

Severity: Low

Finding Overview

The NodeRestriction plugin does not limit access to the events API. It is possible for an

attacker to use kubelet credentials to create arbitrary events. The impact of this issue is

dependent on use.

Finding Detail

In the example below, nodea’s credentials are used to create an event for nodeb.

apiVersion: v1
count: 1
eventTime: null
firstTimestamp: "2021-05-23T21:24:55Z"
involvedObject:
 apiVersion: v1
 kind: Node
 name: nodeb
 uid: 894hhf7c-f243-409d-a88c-1bacdbe28dcf
kind: Event
lastTimestamp: "2021-05-23T21:24:55Z"
message: 'Bogus node message'
metadata:
 creationTimestamp: "2021-05-23T21:24:55Z"
 name: nodeb.1681cf2443c46a5c
 namespace: default
 resourceVersion: "344827"
 uid: 9af8dd2c-c177-47cb-8dfb-c6bd96e69928
reason: NodeNotReady
reportingComponent: ""
reportingInstance: ""
source:
 component: node-controller
type: Normal

kubeadmin@nodea:~$ sudo kubectl --kubeconfig /etc/kubernetes/kubelet.conf create -f
event.yaml
event/nodeb.1681cf2443c46a5c created

Event Creation

Events can be tied to arbitrary objects including Pods.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 56

Recommendation(s)

Design systems and processes in a way that does not rely on the integrity of events. The

NodeRestriction plugin could be modified to restrict events, based on comments in the code

base this is a known issue and could be resolved in the future.

// TODO: restrict to the bound node as creator in the NodeRestrictions admission plugin
rbacv1helpers.NewRule("create", "update",
"patch").Groups(legacyGroup).Resources("events").RuleOrDie(),

bootstrap policy Code Comment

References

Kubernetes: Event API documentation:

https://v1-20.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#event-

v1-core

https://v1-20.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#event-v1-core
https://v1-20.docs.kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#event-v1-core

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 57

Appendix I: Assessment Methodology

Atredis Partners draws on our extensive experience in penetration testing,

reverse engineering, hardware/software exploitation, and embedded

systems design to tailor each assessment to the specific targets, attacker

profile, and threat scenarios relevant to our client’s business drivers and

agreed upon rules of engagement.

Where applicable, we also draw on and reference specific industry best

practices, regulations, and principles of sound systems and software design

to help our clients improve their products while simultaneously making

them more stable and secure.

Our team takes guidance from industry-wide standards and practices such as the National Institute of

Standards and Technology’s (NIST) Special Publications, the Open Web Application Security Project

(OWASP), and the Center for Internet Security (CIS).

Throughout the engagement, we communicate findings as they are identified and validated, and

schedule ongoing engagement meetings and touchpoints, keeping our process open and transparent

and working closely with our clients to focus testing efforts where they provide the most value.

In most engagements, our primary focus is on creating purpose-built test suites and toolchains to

evaluate the target, but we do utilize off-the-shelf tools where applicable as well, both for general patch

audit and best practice validation as well as to ensure a comprehensive and consistent baseline is

obtained.

Research and Profiling Phase

Our research-driven approach to testing begins with a detailed examination of the target, where we

model the behavior of the application, network, and software components in their default state. We map

out hosts and network services, patch levels, and application versions. We frequently use a number of

private and public data sources to collect Open Source Intelligence about the target, and collaborate

with client personnel to further inform our testing objectives.

For network and web application assessments, we perform network and host discovery as well as map

out all available application interfaces and inputs. For hardware assessments, we study the design and

implementation, down to a circuit-debugging level. In reviewing source code or compiled application

code, we map out application flow and call trees and develop a solid working understand of how the

application behaves, thus helping focus our validation and testing efforts on areas where vulnerabilities

might have the highest impact to the application’s security or integrity.

Analysis and Instrumentation Phase

Once we have developed a thorough understanding of the target, we use a number of specialized and

custom-developed tools to perform vulnerability discovery as well as binary, protocol, and runtime

analysis, frequently creating engagement-specific software tools which we share with our clients at the

close of any engagement.

We identify and implement means to monitor and instrument the behavior of the target, utilizing

debugging, decompilation and runtime analysis, as well as making use of memory and filesystem

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 58

forensics analysis to create a comprehensive attack modeling testbed. Where they exist, we also use

common off-the-shelf, open-source and any extant vendor-proprietary tools to aid in testing and

evaluation.

Validation and Attack Phase

Using our understanding of the target, our team creates a series of highly-specific attack and fault

injection test cases and scenarios. Our selection of test cases and testing viewpoints are based on our

understanding of which approaches are most relevant to the target and will gain results in the most

efficient manner, and built in collaboration with our client during the engagement.

Once our test cases are validated and specific attacks are confirmed, we create proof-of-concept artifacts

and pursue confirmed attacks to identify extent of potential damage, risk to the environment, and

reliability of each attack scenario. We also gather all the necessary data to confirm vulnerabilities

identified and work to identify and document specific root causes and all relevant instances in software,

hardware, or firmware where a given issue exists.

Education and Evidentiary Phase

At the conclusion of active testing, our team gathers all raw data, relevant custom toolchains, and

applicable testing artifacts, parses and normalizes these results, and presents an initial findings brief to

our clients, so that remediation can begin while a more formal document is created. Additionally, our

team shares confirmed high-risk findings throughout the engagement so that our clients may begin to

address any critical issues as soon as they are identified.

After the outbrief and initial findings review, we develop a detailed research deliverable report that

provides not only our findings and recommendations but also an open and transparent narrative about

our testing process, observations and specific challenges in developing attacks against our targets, from

the real world perspective of a skilled, motivated attacker.

Automation and Off-The-Shelf Tools

Where applicable or useful, our team does utilize licensed and open-source software to aid us throughout

the evaluation process. These tools and their output are considered secondary to manual human

analysis, but nonetheless provide a valuable secondary source of data, after careful validation and

reduction of false positives.

For runtime analysis and debugging, we rely extensively on Hopper, IDA Pro and Hex-Rays, as well as

platform-specific runtime debuggers, and develop fuzzing, memory analysis, and other testing tools

primarily in Ruby and Python.

In source auditing, we typically work in Visual Studio, Xcode and Eclipse IDE, as well as other markup

tools. For automated source code analysis we will typically use the most appropriate toolchain for the

target, unless client preference dictates another tool.

Network discovery and exploitation make use of Nessus, Metasploit, and other open-source scanning

tools, again deferring to client preference where applicable. Web application runtime analysis relies

extensively on the Burp Suite, Fuzzer and Scanner, as well as purpose-built automation tools built in

Go, Ruby and Python.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 59

Engagement Deliverables

Atredis Partners deliverables include a detailed overview of testing steps and testing dates, as well as

our understanding of the specific risk profile developed from performing the objectives of the given

engagement.

In the engagement summary we focus on “big picture” recommendations and a high-level overview of

shared attributes of vulnerabilities identified and organizational-level recommendations that might

address these findings.

In the findings section of the document, we provide detailed information about vulnerabilities identified,

provide relevant steps and proof-of-concept code to replicate these findings, and our recommended

approach to remediate the issues, developing these recommendations collaboratively with our clients

before finalization of the document.

Our team typically makes use of both DREAD and NIST CVE for risk scoring and naming, but as part of

our charter as a client-driven and collaborative consultancy, we can vary our scoring model to a given

client’s preferred risk model, and in many cases will create our findings using the client’s internal findings

templates, if requested.

Sample deliverables can be provided upon request, but due to the highly specific and confidential nature

of Atredis Partners’ work, these deliverables will be heavily sanitized, and give only a very general sense

of the document structure.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 60

Appendix II: Engagement Team Biographies

Shawn Moyer, Founding Partner and CEO

Shawn Moyer scopes, plans, and coordinates security research and consulting projects for the Atredis

Partners team, including reverse engineering, binary analysis, advanced penetration testing, and private

vulnerability research. As CEO, Shawn works with the Atredis leadership team to build and grow the

Atredis culture, making Atredis Partners a home for some of the best minds in information security, and

ensuring Atredis continues to deliver research and consulting services that exceed our client’s

expectations.

Experience

Shawn brings over 25 years of experience in information security, with an extensive background in

penetration testing, advanced security research including extensive work in mobile and Smart Grid

security, as well as advanced threat modeling and embedded reverse engineering.

Shawn has served as a team lead and consultant in enterprise security for numerous large initiatives in

the financial sector and the federal government, including IBM Internet Security Systems’ X-Force,

MasterCard, a large Federal agency, and Wells Fargo Securities, all focusing on emerging network and

application attacks and defenses.

In 2010, Shawn created Accuvant Labs’ Applied Research practice, delivering advanced research-driven

consulting to numerous clients on mobile platforms, critical infrastructure, medical devices and countless

other targets, growing the practice 1800% in its first year.

Prior to Accuvant, Shawn helped develop FishNet Security’s penetration testing team as a principal

security consultant, growing red team offerings and advanced penetration testing services, while being

twice selected as a consulting MVP.

Key Accomplishments

Shawn has written on emerging threats and other topics for Information Security Magazine and ZDNet,

and his research has been featured in the Washington Post, BusinessWeek, NPR and the New York

Times. Shawn is a twelve-time speaker at the Black Hat Briefings and has been an invited speaker at

other notable security conferences around the world.

Shawn is likely best known for delivering the first public research on social network security, pointing

out much of the threat landscape still exists on social network platforms today. Shawn also co-authored

an analysis of the state of the art in web browser exploit mitigation, creating the first in-depth

comparison of browser security models along with Dr. Charlie Miller, Chris Valasek, Ryan Smith, Joshua

Drake, and Paul Mehta.

Shawn studied Computer and Network Information Systems at Missouri University and the University of

Louisiana at Lafayette, holds numerous information security certifications, and has been a frequent

presenter at national and international security industry conferences.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 61

Tom Steele, Research Consulting Director

Tom Steele leads and executes application security assessments and adversarial engagements, ranging

from source code review to advanced red team assessments.

Experience

Tom has over eight years of professional experience in information security. During that time, his focus

has been on executing and innovating both network and application-level assessments; with a

focus on developing new techniques, tools, and processes that improve collaborative testing, coverage,

deterrent bypass, and data exfiltration.

In addition to performing assessments, Tom is also a seasoned software developer, and has an expert

knowledge of multiple languages and platforms including Go and Node.js. Tom understands how

applications fit together and has used his development experience to develop and maintain many widely

used open-source and proprietary tools including Lair, a real-time testing collaboration application, and

BurpBuddy, an API for BurpSuite Pro.

Prior to joining Atredis, Tom was a practice manager on Optiv’s Attack and Penetration team, where he

led a team of consultants, developed and enhanced methodologies, toolsets, and processes, and

conducted hundreds of security assessments.

Key Accomplishments

Tom is a contributor to the Node Security Project, where he has assisted with the identification and

remediation of many vulnerabilities; both in Node core and in widely deployed libraries. He has consulted

leaders working at Fortune 500 companies on how to increase the security of their application

frameworks. He has presented and lead training at several conferences including Black Hat, DEF CON,

BSides, and DerbyCon and is the Co-Author of No Starch Press' "Black Hat Go".

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 62

Joshua Dow, Senior Research Consultant

Joshua executes highly technical network, web application, and containerization security assessments,

as well as red team and attack simulation engagements.

Experience

Joshua has over 7 years of experience in information security, as both a consultant, in-house security

engineer, and software developer. His experience includes application development, application security,

container security, network penetration testing, and red team assessments.

Prior to joining Atredis Partners, Joshua performed red team, network, web application, and

containerization security assessments as a Senior Security Consultant at NCC Group on both the Full-

Spectrum Attack Simulation (FSAS), and Container and Orchestration Security Services (COSS) teams.

Key Accomplishments

Joshua has created open source tooling, presented at a variety of industry conferences, and authored

blog posts to give back to the information security community.

Joshua studied computer science at the University of Massachusetts Boston.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 63

Nathan Keltner, Founding Partner and CTO

Nathan Keltner leads, executes and coordinates advanced, custom-scoped projects for Atredis Partners.

Nathan’s primary focus includes hardware reverse engineering and penetration testing, red teaming,

protocol analysis and private vulnerability research.

Experience

Nathan began his security career performing penetration tests and various security assessments for a

large retail corporation, later expanding his career in consulting and specialization within red team

penetration testing, exploit development, and software and hardware reverse engineering. Prior to

starting Atredis Partners, Nathan most recently was a Senior Research Consultant on Accuvant’s Applied

Research team.

Nathan has also worked extensively as a penetration tester, helping design penetration testing

methodologies and workflows as well as leading complex red team, social engineering, and attack

simulation engagements, as well as numerous reverse engineering and binary analysis projects.

Nathan’s research and exploitation assessments have recently focused on server hardware and

embedded appliances, such as identification of vulnerabilities in BMC, UEFI, or OS firmware in related

components. Previous expertise includes study of custom RF and ZigBee smart grid infrastructures,

802.15.4 and serial retail networks, multi-function ATM hardware and software, PIN entry devices, IPTV,

VoIP hardware and software stacks, and modern networking access controls and identity management

systems.

Key Accomplishments

Nathan has spoken at Black Hat USA, REcon, DEF CON, and other similar conferences on topics such as

researching and exploiting smart grid radio frequency systems, exploitation in ARM TrustZone, advanced

analysis of purpose-built system-on-chip architectures, and exploitation under limited-access user

security models on the Windows platform.

Nathan holds a Bachelor of Business Administration degree in Management Information Systems from

the University of Oklahoma, has held many information security and audit certifications over the years,

and has been a frequent presenter at national and international security industry conferences.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 64

Lacey Kasten, Client Operations, Technical Writer and Editor

Lacey Kasten helps facilitate client operations and deliverable creation/development at Atredis Partners.

From supporting pre-sales project scoping and back-end operations efforts to shepherding the technical

writing style and voice at Atredis, to the final quality assurance review of penetration test deliverables

prior to engagement completion, Lacey seeks to provide readable, understandable communication to

Atredis Partners’ clientele. Lacey stays embedded in the Information Security community and is

passionate about accessible and equitable knowledge transfer in all mediums across a wide span of

Cyber Security and Information Technology topics.

Experience

Lacey has worked in communications roles from within the Fine Art and Design industry, Museum and

Nonprofit Philanthropy space, Biomedical Computer Science, Higher Education Public Relations, and

Event and Tradeshow industry throughout her career. Her work spans writing (technical, copy editing),

editing and mentorship of writers in the Information Security space, content creation (web development,

event planning, graphic design, and photography), and film and movie production.

Key Accomplishments

Lacey achieved a bachelor’s degree in Communication Design from the Pacific Northwest Col lege of Art

in Portland, Oregon. She is a member on the Board of Directors for the largest Information Security

conference in the United States Pacific Northwest, Security BSides PDX, and serves the charitable

501(c)(3) as coordinator of Sponsorship and Endowment.

Atredis Partners – Salesforce Kubernetes Control Plane Vulnerability Assessment

Atredis Partners Confidential Page 65

Appendix III: About Atredis Partners

Atredis Partners was created in 2013 by a team of security industry veterans who wanted to prioritize

offering quality and client needs over the pressure to grow rapidly at the expense of delivery and

execution. We wanted to build something better, for the long haul.

In six years, Atredis Partners has doubled in size annually, and has been named three times to the Saint

Louis Business Journal’s “Fifty Fastest Growing Companies” and “Ten Fastest Growing Tech Companies”.

Consecutively for the past three years, Atredis Partners has been listed on the Inc. 5,000 list of fastest

growing private companies in the United States.

The Atredis team is made up of some of the greatest minds in Information Security research and

penetration testing, and we’ve built our business on a reputation for delivering deeper, more advanced

assessments than any other firm in our industry.

Atredis Partners team members have presented research over forty times at the BlackHat Briefings

conference in Europe, Japan, and the United States, as well as many other notable security conferences,

including RSA, ShmooCon, DerbyCon, BSides, and PacSec/CanSec. Most of our team hold one or more

advanced degrees in Computer Science or engineering, as well as many other industry certifications and

designations. Atredis team members have authored several books, including The Android Hacker’s

Handbook, The iOS Hacker’s Handbook, Wicked Cool Shell Scripts, Gray Hat C#, and Black Hat Go.

While our client base is by definition confidential and we often operate under strict nondisclosure

agreements, Atredis Partners has delivered notable public security research on improving the security

at Google, Microsoft, The Linux Foundation, Motorola, Samsung and HTC products, and were the first

security research firm to be named in Qualcomm’s Product Security Hall of Fame. We’ve received four

research grants from the Defense Advanced Research Project Agency (DARPA), participated in research

for the CNCF (Cloud Native Computing Foundation) to advance the security of Kubernetes, worked with

OSTIF (The Open Source Technology Improvement Fund) and The Linux Foundation on the Core

Infrastructure Initiative to improve the security and safety of the Linux Kernel, and have identified

entirely new classes of vulnerabilities in hardware, software, and the infrastructure of the World Wide

Web.

In 2015, we expanded our services portfolio to include a wide range of advanced risk and security

program management consulting, expanding our services reach to extend from the technical trenches

into the boardroom. The Atredis Risk and Advisory team has extensive experience building mature

security programs, performing risk and readiness assessments, and serving as trusted partners to our

clients to ensure the right people are making informed decisions about risk and risk management.  

	Engagement Overview
	Assessment Components and Objectives

	Executive Summary
	Key Conclusions
	Findings Summary

	Environment Setup
	Attack Surface Review
	Node to Node
	kubelet
	Authentication
	Authorization

	kube-proxy
	Node to API
	kubelet
	Node Authorizer
	NodeRestriction
	Residual Risk
	Pods
	Services
	Events
	Nodes
	nodes/status

	kube-proxy
	Node Bootstrap

	Threat Model Overview
	Threat ID 1
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 2
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 3
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 4
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 5
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 6
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 7
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 8
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 9
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 10
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 11
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 12
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 13
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 14
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 15
	Impact
	Mitigation
	Testing and Comments

	Threat ID 16
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 17
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 18
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Threat ID 19
	Scenario
	Impact
	Mitigation
	Testing and Comments

	Findings and Recommendations
	Findings Summary
	Findings Detail
	Kubeadm: Kubelet Configured with Webhook Authentication
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Kube-apiserver: Insecure TLS Configuration
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Kube-apiserver: Bootstrap Tokens Allowed without Expiration
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Kube-apiserver: NodeRestriction Does Not Limit Events API
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Appendix I: Assessment Methodology
	Research and Profiling Phase
	Analysis and Instrumentation Phase
	Validation and Attack Phase
	Education and Evidentiary Phase
	Automation and Off-The-Shelf Tools
	Engagement Deliverables

	Appendix II: Engagement Team Biographies
	Shawn Moyer, Founding Partner and CEO
	Experience
	Key Accomplishments

	Tom Steele, Research Consulting Director
	Experience
	Key Accomplishments

	Joshua Dow, Senior Research Consultant
	Experience
	Key Accomplishments

	Nathan Keltner, Founding Partner and CTO
	Experience
	Key Accomplishments

	Lacey Kasten, Client Operations, Technical Writer and Editor
	Experience
	Key Accomplishments

	Appendix III: About Atredis Partners

